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A B S T R A C T

Demand for data-limited stock assessment methods is increasing, and new methods are being developed rapidly.
One class of these methods requires only catch time series and, in some cases, information about life history or
fishery characteristics, to estimate stock status. These catch-only methods (COMs) range from statistical models
trained on data-rich stocks to mechanistic population models that make assumptions about changes in fishing
effort. We review 11 COMs, comparing performance through application to data-rich stocks and simulated
fisheries. The catch-only methods evaluated here produce imprecise and biased estimates of B/BMSY, especially
for stocks that are lightly exploited. They were also generally poor classifiers of stock status. While no method
performed best across all stocks, ensembles of multiple COMs generally performed better than individual COMs.
We advocate for testing new COMs using this common platform. We also caution that performance in estimating
stock status is not sufficient for gauging the usefulness of COMs in managing fisheries. Greater use of man-
agement strategy evaluation is needed before COMs can be considered a reliable tool for management.

1. Introduction

While many stocks in developed parts of the world have compre-
hensive stock assessments that take into account factors such as life
history, age, and abundance trends (Ricard et al., 2012), the majority of
global stocks remain unassessed (Costello et al., 2012). The dearth of
formal assessments is due to several factors, including a lack of re-
sources for data collection and evaluation. Although this problem may
be more prevalent in developing regions and regions with high species
diversity, it is also an issue in developed countries for stocks with small
population size or low economic value (Neubauer et al., 2018; Thorson
and Cope, 2015). Changes to national and international fisheries leg-
islation have required assessment of many stocks not previously as-
sessed (e.g., the reauthorization of the Magnuson–Stevens Fishery

Conservation and Management Act in the U.S. in 2006 and the reform
of the Common Fisheries Policy in the E.U. in 2013). More broadly,
international commitments to the UN Sustainable Development Goals
(e.g., Goal 14 requires stocks to be restored to MSY-levels), implies a
need to understand the status of more of the world’s stocks. In the U.S.,
Europe, and Australia, where many stocks have time series of catch
(i.e., landings plus discards), many new methods for assessing the
“catch-only” family of data-limited fisheries have been developed and
adopted (Anderson et al., 2017; GFCM, 2017; Newman et al., 2015;
Zhou et al., 2016).

Catch-only methods (COMs) are data-limited stock assessment
methods that rely primarily on time series of catch or landings to es-
timate stock biomass status (e.g., B/BMSY or depletion) and other
common fisheries reference points and quantities. Some catch-only
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methods use mechanistic population models to estimate stock status by
recreating stock history from catch data, assumptions about fishing
effort, and informative priors on depletion and demographic para-
meters (e.g., Froese et al., 2017; Martell and Froese, 2013; Thorson
et al., 2013). Others use empirical models trained on data-rich stocks to
predict status from catch data and auxiliary information such as loca-
tion, life history, or fishery characteristics (Berkson et al., 2011;
Costello et al., 2012; Free et al., 2017; Thorson et al., 2012; Zhou et al.,
2017). Recently, ensemble approaches have been used to combine in-
dividual method predictions in an attempt to further improve status
estimates (e.g., Anderson et al., 2017).

Although there is growing interest in using catch-only methods to
assess data-limited fisheries, there has been debate over the wisdom of
these methods (Pauly et al., 2013). This debate has largely centered on
the use of simple rules that assume trends in catch are indicative of
trends in abundance (e.g., Worm et al., 2006) and present overly pes-
simistic views of global fisheries status (Branch et al., 2011). For ex-
ample, studies that identify stocks as collapsed when their catch falls
below 10 % of their historic maximum suggest that 24–36 % of global
fisheries are collapsed (e.g., Pauly, 2008, 2007; Worm et al., 2006)
while studies that identify collapse using biomass estimates from stock
assessments indicate that only 8–14 % of global fisheries are collapsed
(e.g., Branch et al., 2011; Hutchings et al., 2010; Worm et al., 2009). In
reality, many factors besides abundance influence catch levels, in-
cluding management regulations, taxonomy changes, exclusion of dis-
tant water fleets, shifting market and fuel prices, natural disasters, and
civil war (Branch et al., 2011). Recent catch-only methods take more
sophisticated approaches that attempt to account for some of these
complexities and may therefore provide better estimates of population
status than naïve interpretations of catch trends.

Understanding how well catch-only methods estimate stock status is
necessary before they can be used in management. Here, we review 11
catch-only stock assessment methods and develop a framework for
testing and comparing the performance of these and future catch-only
methods. This framework involves applying the methods to both si-
mulated and real-world fish stocks and quantifying their ability to
predict both continuous (i.e., B/BMSY) and categorical (i.e., under, over,
or fully exploited) stock status using multiple performance metrics. We
also provide recommendations for managers seeking to assess catch-
only fisheries and identify opportunities for continuing to improve
catch-only stock assessment methods.

2. Taxonomy of catch-only methods

Catch-only methods for estimating stock status can be broadly ca-
tegorized as taking a graphical, empirical, mechanistic, or ensemble
approach (Table 1). Graphical approaches use simple rules about fish-
eries development theory to classify stocks into development categories
(Froese and Kesner-Reyes, 2002; Kleisner et al., 2013). Empirical ap-
proaches use information from assessed stocks to derive relationships
between stock status and catch data, often with auxiliary information
such as location, life history, or characteristics of the fishery (Berkson
et al., 2011; Costello et al., 2012; Free et al., 2017; Thorson et al., 2012;
Zhou et al., 2017). Thus, empirical approaches attempt to “learn from
experience” (Hilborn and Liermann, 1998) by using the dynamics of
data-rich stocks to interpret the catch data of data-limited stocks. They
estimate a single reference point, generally B/BMSY, but sometimes
depletion (e.g., Zhou et al., 2017), and are typically justified through
cross-validation where the COM is tested on stocks in a test data set of
stocks assessed through more robust methods. These empirical ap-
proaches rely on statistical associations in real-world data, e.g., differ-
ences in average stock status among regions. Therefore, they are not
typically evaluated using simulation testing.

By contrast, mechanistic approaches postulate an underlying po-
pulation dynamics model and can be divided into those that fit only a
population dynamics model (Froese et al., 2017; Martell and Froese,

2013; Zhou et al., 2018) or explicitly fit a coupled model of population
and fishing effort dynamics (Thorson et al., 2013; Vasconcellos and
Cochrane, 2005). That is, these models attempt to explain an observed
change in catch through a combination of change in abundance and
change in fishing effort. Both types require assumptions about fishing
effort, and benefit from priors on quantities such as initial and final year
depletion and model parameters such as intrinsic growth rate (r) or
carrying capacity (K). Mechanistic approaches estimate a wide range of
fisheries quantities including r and K and reference points including B/
BMSY, F/FMSY, BMSY, FMSY, and MSY. They are often validated through a
combination of simulation testing and comparison to more robust, data-
rich assessment methods.

Ensemble models, which take the average or weighted average of
several methods, have been proposed to provide more accurate and less
biased estimates than individual methods. Most recently, super-
ensembles, which attempt to achieve the best overall predictions by
harnessing the strengths of many individual methods through calibra-
tion via a statistical model, have improved estimation performance in
some circumstances compared to simple ensembles (Anderson et al.,
2017).

The 11 methods evaluated here span graphical, empirical, me-
chanistic, and ensemble approaches (Table 1). We did not evaluate
DCAC (MacCall, 2009) or DB-SRA (Dick and MacCall, 2011), which are
based heavily on catch data, but focus on estimating overfishing limits
rather than stock status and require more intensive life history in-
formation (e.g., BMSY/B0, FMSY/M, age-at-maturity) and complete catch
time series (DB-SRA only), and expect informed estimates of depletion.
While the methods evaluated here include built-in procedures for es-
tablishing vague depletion priors, assumed depletions for DCAC and
DB-SRA are generally set using expert judgement.

3. Catch-only method descriptions

3.1. Stock status plots

The first catch-only assessment methods used simple rules to gra-
phically infer stock status from catch time series. (Csirke and Sharp,
1984) illustrated how a time series of landings could be used to classify
a fishery’s state of development into six phases: (1) predevelopment, (2)
growth, (3) full exploitation, (4) overexploitation, (5) collapse, and (6)
recovery. This classification is based on the relationship between
abundance, fishing effort, and catch in each phase. It assumes that
abundance decreases as catch and effort increase during the pre-
development and growth phases. As the fishery becomes fully exploited
and moves into overexploitation, the relationship between abundance
and catch breaks down until high fishing effort reduces abundance,
after which catches decline (Hilborn and Walters, 1992). Later,
(Grainger and Garcia, 1996) used catch trends of the 200 top-landed
species globally to assign stocks to the development phases defined by
(Csirke and Sharp, 1984) and presented the first description of global
marine fisheries status.

These plots are called “stock status plots” (SSPs) and there have
been several iterations of the approach (e.g., Froese and Kesner-Reyes,
2002; Garcia et al., 2005; Kleisner et al., 2013; Pauly, 2008). Generally,
they assign status based on the ratio of current catch to the maximum
catch with the development phases occurring before the year of max-
imum catch and the overexploitation, collapse, and recovery phases
occurring after the year of maximum catch. Kleisner et al. (2013) pre-
sent a detailed accounting of these methods and the development of SSP
algorithms. SSPs have been widely used but have been criticized for
being negatively biased and providing overly pessimistic conclusions
regarding stock status (Branch et al., 2011; Carruthers et al., 2012).
Anderson et al. (2012) attempted to overcome some of these defi-
ciencies by smoothing the catch time series, categorizing fisheries as
developed within three years of the peak catch, and using biological
reference points to calibrate the thresholds. Kleisner et al. (2013) also
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calculated the plots based on smoothed catches and updated the algo-
rithm to account for stock rebuilding to further reduce biases.

3.2. Refined ORCS approach

The “Only Reliable Catch Stocks” (ORCS) Working Group approach
estimates stock status (i.e., under, fully, or overexploited) as the un-
weighted mean of 14 categorical stock- and fishery-related predictors
(Berkson et al., 2011; SAFMC, 2013, 2012). Free et al. (2017) refined
the approach (rORCS) using a boosted classification tree model trained
on data-rich stocks in the RAM Legacy Database to classify stock status
from 12 of these predictors, the most important of which were the ex-
vessel price, status of the assessed stocks in the fishery, targeting in-
tensity, discard rate, and occurrence in the catch (Free et al., 2017).
While these Likert-scale predictors can generally be provided by experts
familiar with the fishery, the rORCS model can impute values for
missing predictors and can thus be used to assess even the most data-
poor fisheries. The rORCS approach also includes a step for estimating
the overfishing limit as the product of a historical catch statistic and a
scalar based on stock status and risk policy. The refined ORCS approach
performed significantly better than the original approach and six other
catch-only methods when evaluated on a small, independent test da-
taset of data-rich stocks (Free et al., 2017). The original approach was
used to explore catch limits for 20 stocks in the U.S. Southeast (SAFMC,
2013, 2012) and the refined approach has been used to assess the status
of chub mackerel and recommend a corresponding overfishing limit in
the U.S. Mid-Atlantic (MAFMC, 2019).

3.3. Modified panel regression model

Costello et al. (2012) used a panel regression model (mPRM) trained
on data-rich stocks in the RAM Legacy Database to estimate B/BMSY

using characteristics of the stock (e.g., species category, age-at-ma-
turity, max length, etc.) and statistical properties of the catch time
series (e.g., years to max catch, slope in catch in first six years, etc.).
The approach has subsequently been modified by condensing the spe-
cies categories into three broad life-history categories (i.e., small pe-
lagic, large pelagic, demersal) and removing the maximum catch pre-
dictor (Anderson et al., 2017; Rosenberg et al., 2014). These
modifications were made to standardize the method with other catch-
only methods and to allow it to be tested on simulated data. The ori-
ginal model was used to assess the status of > 1,700 marine fisheries
(Costello et al., 2012) and the modified model has been used as a
predictor of stock status in the superensemble model described below
(Anderson et al., 2017).

3.4. Catch-only boosted regression tree model

Zhou et al. (2017) used boosted regression tree models (zBRT)
trained on data-rich stocks in the RAM Legacy Database to estimate
saturation, the ratio of current biomass to the unfished biomass (B/B0

≈ 0.5*B/BMSY), from 56 catch history statistics, the most important of
which were linear regression coefficients for the whole catch time
series, the subseries before and after the maximum catch, and recent
years. Ultimately, saturation was estimated as the average of the values
predicted by two reduced and bias-corrected BRT models (8 and 38
predictors each). The zBRT method was conceptualized as an ad-
vancement of the SSP-2002, SSP-2013, and mPRM methods, which also
estimate status from patterns in catch history, and Zhou et al. (2017)
show that the method is a better predictor of status than these methods
when applied to the dataset used for model training. Estimates of sa-
turation from the zBRT method may therefore be useful for deriving
depletion (i.e., 1 – saturation) priors for more advanced stock reduction
analyses such as DB-SRA (Dick and MacCall, 2011), DCAC (MacCall,
2009), and catch-MSY (described below). Indeed, Zhou et al. (2018)
developed their own catch-only stock reduction analysis (described

below) that uses their zBRT method to set a prior for final year deple-
tion.

3.5. Catch-MSY methods

Catch-MSY methods (Froese et al., 2017; Martell and Froese, 2013)
are widely used catch-only stock reduction analyses. Stock reduction
analyses reconstruct historical abundance and exploitation rates by si-
mulating biomass trajectories that could produce the observed catch
time series given informative priors on initial and final year depletion
and stock dynamics such as carrying capacity, K, or intrinsic growth
rate, r, in the Schaefer model (Schaefer, 1954). The original catch-MSY
method (cMSY-2013; Martell and Froese, 2013) establishes priors for r
based on population resilience, K based on maximum catch (e.g., be-
tween Cmax and 100*Cmax), and initial and final year depletion based on
the ratio of initial and final year catch to the maximum catch. It then
estimates ‘viable’ pairs of r and K (i.e., pairs that do not result in ex-
tinction or final year depletion outside the bounds of the prior) and uses
the geometric mean of these pairs to estimate MSY. The method was
modified by Rosenberg et al. (2014) to generate biomass trends from all
viable r-K pairs and produce an estimate of B/BMSY from the median
trend. Froese et al. (2017) expanded the method (cMSY-2017) to esti-
mate biomass, exploitation rates, and MSY and related reference points.
They also introduced a procedure to identify the most probable r-K
pairs that aims to address the tendency for production models to
overestimate productivity at very low stock sizes. The catch-MSY
methods have been used in the assessment of global (Costello et al.,
2016) and regional fisheries (Froese et al., 2018) and the assessment of
Western Pacific stocks (De Oliveira, 2015), East China Sea stocks
(Zhang et al., 2018), Indian Ocean stocks (IOTC, 2017, 2016, 2015),
and Atlantic shortfin mako shark (Winker et al., 2017), among many
others.

3.6. Optimized catch-only model

The optimized catch-only model (OCOM) employs a stock reduction
analysis using priors for intrinsic growth rate (r) and final year deple-
tion derived from natural mortality and saturation estimated by the
zBRT method, respectively (Zhou et al., 2018). The stock reduction
analysis uses a Schaefer biomass dynamics model and an algorithm for
identifying feasible parameter combinations to estimate biological
quantities such as r, K, annual biomass, and depletion as well as man-
agement quantities such as MSY, BMSY, and FMSY. OCOM was con-
ceptualized as an advancement of the catch-MSY stock reduction ana-
lyses because it uses an optimization algorithm rather than a stochastic
“thread the needle” approach (Walters et al., 2006) as well as a more
informed depletion prior. Zhou et al. (2018) test the OCOM method on
14 Australian fish stocks assessed using Stock Synthesis (Methot and
Wetzel, 2013) and show that OCOM estimates biological and manage-
ment quantities comparable to those from full assessments. OCOM has
been used by the Indian Ocean Tuna Commission for assessment of
several tuna stocks (IOTC, 2017, 2016, 2015).

3.7. Catch-only model with sampling-importance-resampling

COM-SIR (catch-only-model with sampling-importance-resampling)
is a coupled harvest-dynamics model (Vasconcellos and Cochrane,
2005) in which biomass and harvest (i.e., fishing effort) dynamics are
assumed to follow Schaefer and logistic models, respectively. The
model is fit using a sampling-importance-resampling algorithm. COM-
SIR was tested on Atlantic yellowfin tuna (Thunnus albacares) and Na-
mibian hake (Merluccius capensis) stocks using data from years when
these stocks were unregulated. The model performed poorly for yel-
lowfin tuna but produced B/BMSY and F/FMSY estimates similar to those
estimated by data-rich assessments for Namibian hake. Although we are
unaware of other examples of COM-SIR having been used to assess the
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status of data-limited stocks, it has been used as a predictor of stock
status in the superensemble model described below (Anderson et al.,
2017).

3.8. State-space catch-only model

The state-space catch-only model (SSCOM) is a hierarchical model
that, similar to COM-SIR, is based on a coupled harvest-dynamics model
(Thorson et al., 2013). SSCOM estimates unobserved dynamics in both
fishing effort and the fished population based on a catch time series and
priors on r, the maximum rate of increase of fishing effort, and the
magnitude of various forms of stochasticity. The model is fit in a
Bayesian state-space framework to integrate across three forms of sto-
chasticity: variation in effort, population dynamics, and fishing effi-
ciency. The model was validated via simulation testing and application
to eight assessed US West Coast groundfish stocks (Thorson et al.,
2013). The model recovered coupled population and effort dynamics
for simulated stocks and yielded results comparable to data-rich as-
sessments for assessed stocks exhibiting roller coaster catch (i.e., in-
creasing then decreasing catch or a “two-way trip”). Although we are
unaware of other examples of SSCOM having been used to assess the
status of data-limited stocks, it has been used as a predictor of stock
status in the superensemble model described below (Anderson et al.,
2017).

3.9. Superensemble models

The catch-only methods described above have strengths and
weaknesses — they perform better under some conditions than others
— the superensemble model attempts to harness the strengths of mul-
tiple method to derive the best overall prediction (Anderson et al.,
2017). While basic ensemble models take an average or weighted
average of multiple method predictions, a superensemble goes a step
further by calibrating individual method predictions through a regres-
sion model fitted to data with known or trusted properties
(Krishnamurti et al., 1999). This “training” dataset might be a simu-
lated dataset with known status or a set of stocks in which stock status is
already well estimated. This process lets the superensemble exploit the
covariance between individual methods, allows for nonlinear weight-
ings of individual method predictions, and allows those weightings to
be a function of covariates. These additional covariates could be, for
example, exploitation patterns, life history characteristics, or statistical
properties of the catch time series. For instance, if method A and
method B disagree on the status of a stock, a superensemble model
might choose to weight method A more heavily because it tends to
perform better for species with a similar life history.

Anderson et al. (2017) showed that a random forest superensemble
comprised of mPRM, cMSY-2013, COM-SIR, SSCOM, and two covari-
ates describing the spectral properties (i.e., variation in the frequency
domain) of the catch time series outperformed any one method in terms
of bias, accuracy, and correlation across multiple stocks. This was true
when tested on a simulated dataset and when tested on empirical data
from the RAM Legacy Database. Recently, Rosenberg et al. (2017) ap-
plied the same superensemble approach to assess global fish stocks
status with catch data from the FAO. Beyond these two applications, the
superensemble approach could be used to combine predictions from
any of the methods outlined in this paper. The approach is limited
mainly by the accuracy of the individual methods and the degree to
which the training or “trusted” dataset is representative of the dataset
to which they are applied.

4. Performance evaluation methods

4.1. Overview

We evaluated the performance of the 11 catch-only methods by

testing them on catch data from both real and simulated fish stocks.
Although the status of real fish stocks is not known without error, they
provide a potentially more representative basis for testing as they re-
flect all of the uncertainties (e.g., observation and process errors) in-
herent in actual fisheries data. Simulated fish stocks offer greater
sample size, the ability to compare predicted status against known
status (without error), and the opportunity to compare performance
among stocks of varying traits. We evaluated the performance of all
methods categorically (i.e., how well does each method classify a stock
as under, fully, or overexploited) and eight methods continuously (i.e.,
how well does each method estimate B/BMSY). Because these metrics
are widely applicable and these datasets are publicly available, they
provide a framework for comparing the performance of future data-
limited assessment methods. We provide an R package (“datalimited2″)
for calculating these metrics and creating the plots presented here:
https://github.com/cfree14/datalimited2

4.2. Test stocks

We applied the 11 methods to real fish stocks in the RAM Legacy
Stock Assessment Database (RAMLDB v. 2.95; Ricard et al., 2012) and
simulated fish stocks from Rosenberg et al. (2014). The RAMLDB is a
global database of catch data and stock assessment output, including
reference points and time series of biomass and fishing mortality. We
evaluated 175 of the 193 RAMLDB stocks used by Free et al. (2017)
with catch time series ≥20 years long after trimming years of zero
catch from the beginning of the time series. The methods converged on
status predictions for 135 stocks (Table S1) including stocks that are
under (B/BMSY > 1.5; 37.8 % of stocks), fully (0.5 < B/BMSY < 1.5;
45.9 % of stocks), and overexploited (B/BMSY < 0.5; 16.3 % of stocks)
and representing a variety of taxa, regions, and management agencies
(Fig. S1A-E). The simulated stocks in Rosenberg et al. (2014) represent
a fully factorial dataset of simulated fisheries including three fish life
histories, three levels of initial biomass depletion, four exploitation
scenarios, two levels of recruitment variability, two levels of recruit-
ment autocorrelation, and two levels of measurement error, with each
combination of parameters run through ten stochastic iterations (Table
S2). The methods converged on status predictions for 5491 of 5,760
stocks (Table S1) including stocks that are under (26.1 % of stocks),
fully (59.2 % of stocks), and overexploited (14.6 % of stocks) (Fig.
S1F). See the supplementary text for details on applying the catch-only
methods.

4.3. Performance metrics

The 11 methods provide a mixture of continuous (i.e., B/BMSY or
saturation) and categorical (i.e., exploitation or development category)
status predictions (Table 1). To compare performance categorically, we
standardized status estimates to the following three exploitation cate-
gories: under, fully, and overexploited (see the supplementary text for
details). To compare performance continuously, we converted estimates
of saturation to B/BMSY (i.e., B/BMSY = 2*saturation, assuming Schaefer
production dynamics).

We evaluated the continuous performance of the eight methods that
estimate B/BMSY or saturation by measuring each method’s bias, accu-
racy, and Spearman’s rank-order correlation. We measured bias as the
median proportional error (MPE) which quantifies directional error
(i.e., positively or negatively biased). We measured accuracy as the
median absolute proportional error (MAPE) which quantifies overall
error (i.e., error in any direction). Proportional error (PE) is calculated
as ( ˆ )/| |, where ˆ and represent predicted and “true” (or data-
rich stock assessment) B/BMSY values, respectively.

We evaluated the categorical performance of each method using
both proportional agreement (accuracy) and Cohen’s kappa. Cohen’s
kappa measures inter-rate agreement between categorical items and is
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more robust than simple proportional agreement because it takes into
account the probability of agreement occurring by chance (Cohen,
1968). This is necessary for tests on both the RAMLDB and simulated
stocks given the uneven distribution of exploitation categories in both
datasets (many fully exploited stocks, few overexploited stocks; Fig.
S1). For example, if a method misclassifies most overexploited stocks
but correctly classifies most fully exploited stocks, it would still earn a
high accuracy, but its kappa value would be appropriately penalized.
Although there are no definitive rules for interpreting Cohen’s kappa,
general guidelines suggest that values > 0.70 are “excellent”, 0.4-0.7
are “good”, 0.2-0.4 are “fair”, and < 0.2 are “poor” (Landis and Koch,
1977).

5. Performance results

The catch-only methods evaluated here produce imprecise and
biased estimates of B/BMSY, especially for stocks that are lightly

exploited (Figs. 1 and 2). They are also “poor” classifiers of stock status
with two exceptions (Fig. 2): (1) the superensemble was a “fair” clas-
sifier of status when tested on the simulated stocks (the dataset on
which it was trained) and (2) the refined ORCS approach was a “good”
classifier of status when tested on the RAMLDB stocks (the dataset on
which it was trained). In general, the superensemble model was the best
predictor of stock status. It produced the most accurate, most corre-
lated, and least biased predictions of B/BMSY when tested on the si-
mulated stocks and was among the best predictors of B/BMSY when
tested on the RAMLDB stocks (Fig. 2). It performed consistently well
across effort dynamics scenarios represented in the simulated stocks
(Fig. 3): it was the best predictor of status for stocks experiencing
constant fishing effort and it was among the best predictors of status for
stocks experiencing roller coaster and biomass-coupled fishing effort.
cMSY-2017, mPRM, and OCOM were better predictors of status for
stocks experiencing increasing fishing effort (Fig. 3).

The generally poor performance of the evaluated catch-only

Fig. 1. Observed population status versus population status predicted by eight catch-only methods for the RAM Legacy Database stocks (n = 135) and Rosenberg
et al. (2014) simulated stocks (n = 5,491). Points are binned for visual presentation: darker areas indicate areas with greater density of points. Median proportional
error (MPE) and median absolute proportional error (MAPE) measure bias and accuracy, respectively.
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methods arose through a variety of mechanisms. While the super-
ensemble model made relatively unbiased predictions of status for
overexploited stocks, it was negatively biased for lightly exploited
stocks (Fig. 1). This pattern was more pronounced for the RAMLDB
stocks than for the simulated stocks on which the superensemble model
was trained. SSCOM and COM-SIR produced positively biased predic-
tions of status, especially for overexploited stocks, when tested on both
the simulated and RAMLDB stocks (Fig. 1). cMSY-13 and OCOM gen-
erated bimodal predictions of B/BMSY for both the simulated and
RAMLDB stocks (Fig. 1). Although patterns in performance revealed
through testing on the simulated and RAMLDB stocks were generally
shared, slight differences in the relative performance of the evaluated
methods arose given that: (1) the efforts dynamics represented in the
simulated stocks are factorially balanced while the effort dynamics
represented in RAMLDB stocks are ad-hoc; and (2) some of the methods
were trained on the simulated stock (i.e., the superensemble) or the
RAMLDB stock (i.e., zBRT, mPRM, rORCS) datasets and perform better
when tested on these datasets.

6. Discussion

Although all stock assessment methods, even data-intensive ones,
are uncertain (Hilborn and Walters, 1992), the catch-only methods

evaluated here produce especially imprecise and biased estimates of
stock biomass status. Ono et al. (2015) provide a useful benchmark for
comparing the accuracy of the catch-only methods evaluated here to
the accuracy of more data-intensive assessment methods. They mea-
sured the accuracy of statistical catch-at-age (SCAA) models through
testing on simulated life histories (cod-, flatfish-, and sardine-like spe-
cies) and exploitation histories (constant, increasing, and roller coaster
effort dynamics) highly similar to those implemented in our simulation
framework (Table S2; Rosenberg et al., 2014). They found that SCAA
models, given the highest quality and quantity of length and age
composition data (similar to the data available in U.S. West Coast
fisheries) were 9–16 % inaccurate (MAPE), which is significantly lower
than the 32–60 % inaccuracy of the catch-only methods evaluated here.
When provided lower qualities and quantities of data, the SCAA models
were 7–33 % inaccurate, which is still considerably more accurate than
the evaluated catch-only methods.

There is, however, opportunity to improve the performance and
utility of catch-only assessment methods. While no method performed
best across all stocks, the superensemble model generally produced
better estimates of B/BMSY than the individual catch-only methods, and
exhibited accuracy (32 % inaccurate) comparable to statistical catch-at-
age models provided low quality data (33 % inaccurate; Ono et al.,
2015). The performance of the superensemble model could be further

Fig. 2. The status estimation performance of catch-only methods tested on the Rosenberg et al. (2014) simulated stocks and RAM Legacy Database stocks. In the
continuous performance plots (top row), the best performing methods are indicated by high rank-order correlation and high accuracy (low MAPE). The x-axes have
been reversed so that the best performing methods appear in the top-right corners. In the categorical performance plots (bottom row), the best performing methods
are indicated by high Cohen’s kappa and high accuracy (top-right corner). Note: Data-rich statistical catch at-age models produced MAPEs of 0.07-0.33 (0.15 median)
when tested in a similar simulation framework by Ono et al. (2015). These values are significantly lower (more accurate) than the MAPEs produced by the evaluated
COMs.

C.M. Free, et al. Fisheries Research 223 (2020) 105452

7



improved by using the B/BMSY predictions of additional catch-only
methods as predictors, especially those that are not highly correlated
with the methods already included in the model (Anderson et al.,
2017). zBRT is a promising candidate because it yields reasonable
predictions (e.g., not bimodal like those from OCOM) and its predic-
tions are not highly correlated with the methods already included (Fig.
S3). The performance of the superensemble model as a classifier may
also be improved by explicitly training the model to predict categorical
status. The sensitivity of model performance to effort history suggests
that significant gains could be made by tailoring superensemble models
to each of the Rosenberg et al. (2014) effort dynamics scenarios. The
scenarios are quite general (i.e., constant, increasing, roller coaster, and
biomass-coupled effort) and it is likely that an expert familiar with the
fishery could accurately classify its effort history and select the corre-
sponding effort-tailored model. Alternatively, superensemble models
can be tailored to a specific fishery of interest by training a new model
on fisheries simulated to reflect the target fishery (i.e., similar life
history, exploitation history, depletion, etc.). R packages such as FLR
(Kell et al., 2007) and DLMtool (Carruthers and Hordyk, 2018) make
such an exercise widely accessible by simulating fisheries with user-
specified characteristics.

Although the refined ORCS approach was by far the best classifier of
stock status for the real stocks, it must undergo further evaluation be-
fore it can be unequivocally recommended. The training and testing of

the approach on assessed stocks could be problematic as assessed (data-
rich) stocks differ systematically from the unassessed (data-limited)
stocks to which the method would be applied. For example, assessed
fisheries generally target larger, slower growing, and higher trophic
level species (Pinsky et al., 2011) and are generally higher volume,
more valuable, and in better condition (Costello et al., 2012) than their
unassessed counterparts. Consequently, it is possible that the refined
ORCS approach is predictive for data-rich fisheries, but not data-limited
ones. This problem is true of all empirical catch-only methods and
testing these methods on data-rich fisheries with characteristics similar
to data-limited fisheries is a necessary next step in their validation.
Recently, Neubauer et al. (2018) made this possible by measuring the
frequency of assessment of data-rich stocks in the United States and
identifying the traits that determine assessment frequency. These re-
sults could be used in a “propensity score” framework (Rosenbaum and
Rubin, 1983) to assess the bias of the data used to train and test em-
pirical catch-only methods or to identify infrequently assessed, data-
rich stocks (similar to unassessed, data-limited stocks) to test catch-only
methods on.

Estimation of stock status is only the first step in the management
process and status determinations alone do not guarantee, or even
preclude (Dowling et al., 2015), the effective and sustainable man-
agement of fisheries. In addition, successful management requires the
testing and setting of harvest control rules, often facilitated by

Fig. 3. The status estimation performance of catch-only methods tested on the Rosenberg et al. (2014) simulated stocks by effort dynamics scenario. The best
performing methods are indicated by high rank-order correlation and high accuracy (low MAPE). The x-axes have been reversed so that the best performing methods
appear in the top-right corners.
Note: Data-rich statistical catch at-age models produced MAPEs of 0.08-0.33 (0.15 median), 0.09-0.25 (0.16 median), and 0.07-0.21 (0.16 median) when tested on
constant, increasing, and roller coaster effort dynamics in a similar simulation framework by Ono et al. (2015). These values are significantly lower (more accurate)
than the MAPEs produced by the evaluated COMs.
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management strategy evaluation (Punt et al., 2016). Management
strategy evaluation involves developing an operating model that de-
scribes the dynamics of the fish population and fishery as well as the
monitoring and implementation phases of management. The impact of
the proposed management strategies (comprised of an assessment
method and harvest control rules) on the operating model are evaluated
by simulating possible outcomes in a feedback loop (Punt et al., 2016).
Catch-only methods differ in accuracy and precision across various life
history traits and fishery harvest dynamics and it is uncertain how these
differences affect the performance of harvest control rules. Evaluating
the performance of harvest control rules that have been informed by
catch-only stock assessments is thus essential to ensure management
objectives for data-limited fisheries can be met.

Past management strategy evaluations using simulated stocks with
generic population and fishing dynamics have shown that the man-
agement performance of catch-only methods is difficult to generalize
across all situations (Carruthers et al., 2014; Walsh et al., 2018). Catch-
only methods coupled with cautious effort-based harvest control rules
can result in improved B/BMSY status and lower risks of overfishing,
compared to unmanaged fishing practices, but with a substantial fore-
gone yield compared to what might be achievable if status could be
determined more precisely (Walsh et al., 2018). Therefore, tailored
management strategy evaluations should be conducted for specific
data-limited fisheries of interest prior to the implementation and uptake
of catch-only assessment methods. These management strategy eva-
luations can also identify new sources of data than can improve cer-
tainty in assessments and facilitate the transition from data-limited to
data-moderate fisheries.

In many cases, developing more sophisticated catch-only methods,
tuning catch-only methods to specific fisheries, and/or conducting
tailored management strategy evaluations may not be feasible due to
capacity limitations (Bundy et al., 2016; Ricard et al., 2012) or eco-
nomical due to small fishery size or commercial value (Neubauer et al.,
2018). In capacity-limited systems, management could focus instead on
implementing “primary fisheries management” (Cochrane et al., 2011),
which uses best available science and precautionary principles to
manage fisheries while also establishing or strengthening participatory
co-management to incentivize sustainable stewardship. In all systems,
procedure-based data-limited approaches that set catch targets or effort
limits based on proxy indicators could be more constructive than data-
limited methods for assessing status (Dowling et al., 2015). For ex-
ample, Wiedenmann et al. (2019) showed that catch curve methods,
which require the collection of additional catch-at-age data, estimate
catch targets close to the overfishing limit and are not sensitive to
historical exploitation rates. The supplementation of catch time series
with data on catch length composition is also promising (Thorson and
Cope, 2015) and could result in better management targets than purely
length-based methods (reviewed by Chong et al., 2019) or the catch-
only methods evaluated here.

On balance, existing catch-only methods have limited accuracy and
a high probability of providing misleading information if used to guide
fishery management (Walsh et al., 2018). Paradoxically, if these
methods are used to justify new restrictions on harvest, the relationship
between fishing effort, catch, and biomass is altered and catch-only
methods applied to the resulting future catch time series may be even
less accurate. That is, once catch is constrained by management, the
information content of the catch time series is degraded. We thus re-
commend that catch-only methods be treated as a temporary stepping
stone while data (e.g., size or age composition) are collected that will
allow for more reliable methods to be applied.
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