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1. Summary 
 
Catch-only models (COMs) represent a useful class of tools for categorizing the status of the 
vast majority of the world’s fisheries which lack formal stock assessments.  Testing of COMS on 
simulated data highlighted substantial differences in performance depending on the fishing 
effort (and thus fishing mortality) trend used to generate the simulated data.  Because of this, 
no single method is optimal for all fishing effort trend scenarios.  Smaller differences in model 
performance are also apparent when comparing different simulated life histories. 
 
We developed and tested two types of higher order COMs (i.e., COMs composed of two or 
more individual COMs): 1. Effort-tailored superensembles, i.e., superensembles fit to simulated 
catch data from individual effort dynamics scenarios and 2. A mechanistic two-stage COM that 
used the Zhou-BRT method to constrain an influential parameter of the cMSY model. 
 
The effort-tailored superensembles were consistently the best (or equally good) performers in 
both continuous and categorical cross-validation using simulated data and data from real 
assessed stocks.  However, even these best models showed only fair performance when applied 
to data from real stocks with some evidence of a pessimistic bias overall.  Of perhaps greater 
concern, these effort-tailored superensembles perform poorly when the effort trend is mis-
specified.  The new two-stage COM developed here performed better than existing two-stage 
COMs, but generally not as well as the superensembles. 
 
In summary, if a COM is to be used for status estimation, and effort trends can be reliably 
categorized, we recommend the use of Super-4.  However, testing against RAMLDB stocks 
indicates that accuracy is modest and some bias may exist (i.e., a tendency to slightly 
underestimate B/BMSY).  We cannot yet recommend any COMs as a reliable tool for providing 
management advice without thorough testing in a management strategy evaluation (MSE) 
framework. 
 
2. Introduction 
 
Catch-only models (COMs) are a stock assessment method that requires no time series data 
other than catch.  Despite ongoing debate about the information content present in a catch 
time series (Pauly et al. 2013), development, testing, and application of new COMs has 
preceded rapidly over the past few years (Rosenberg et al. 2014, 2017; Zhou et al. 2016, 2017; 
Free et al. 2017, Anderson et al. 2017).  If these models are determined to be reliable, COMs 
represent a useful class of tools for categorizing the status of the vast majority of the world’s 



fisheries which lack formal stock assessments.  One especially important application would be 
to use COMs to improve the accuracy of global stock status classifications in the FAO's State of 
World Fisheries and Aquaculture (SOFIA) reports. 
 
Testing of COMs by Rosenberg et al. (2014) and Jensen and Free (2017) on simulated catch time 
series has revealed that model performance varies greatly depending on the simulated effort 
dynamics.  This is not surprising as effort is a “hidden” (i.e., unobserved) variable in all COMs 
that are based on an underlying population dynamics model (Thorson et al. 2013).  Methods 
such as cMSY, which perform well under some scenarios of simulated change in fishing effort, 
perform quite poorly under others.  No single method is optimal for all scenarios.  Thus, there is 
a strong potential for significant improvements in performance of COMs, if they are tailored to 
specific effort scenarios and combined with an expert classification of effort dynamics, which 
could be accomplished through a simple questionnaire given to data providers. 
 
Superensembles, a type of COM which uses the predictions of other COMs as input for a 
statistical model, have been shown to generally outperform individual COMs at predicting stock 
status and trends (Anderson et al. 2017).  However, the superensembles developed by 
Anderson et al. (2017) were fit to simulation data aggregated across Rosenberg et al.’s (2014) 
four different effort dynamics scenarios.  This provides a certain degree of robustness to 
uncertainty in the effort dynamics, but it is sub-optimal for stocks for which effort dynamics are 
known.  The Rosenberg et al. (2014) effort dynamics scenarios are quite general (increasing, 
decreasing, or stable trend and biomass-coupled effort), and it is likely that someone familiar 
with a fishery would be able to accurately categorize it in terms of its effort dynamics.  
Development and testing of superensemble models specific to each of Rosenberg et al.’s (2014) 
four effort dynamics scenarios will provide a useful set of tools for estimating status for stocks 
where only a time series of catch and an effort classification are available. 
 
Mechanistic combinations of models also hold promise.  For example, performance of cMSY 
depends on assumptions regarding depletion in the final year, a quantity that is estimated by 
the Zhou-BRT COM.  Thus, a two-stage approach which combines these two methods may 
perform better than either method alone.   
 
In addition, life history characteristics of the species in question also play a role in determining 
the accuracy of stock status estimates from COMs and the best performing COM varies 
somewhat depending on life history – though this difference is not as great as the differences 
attributable to effort dynamics (Jensen and Free 2017, Table 8). 
 
Our goals were: (1) to fit individual effort-tailored superensemble models to simulated catch 
data from each of the four effort dynamics scenarios used by Rosenberg et al. (2014); (2) to 
develop a two-stage COM using Zhou-BRT to estimate the final year depletion used by cMSY; 
(3) to test these two approaches through cross-validation using withheld simulated data and 
catch data from real stocks with full assessments. 
 
3. Methods 



 
3.1 Datasets 
 
We developed the effort-tailored superensemble models using simulated fish stocks from 
Rosenberg et al. (2014) and tested the models on a set of simulated stocks withheld from 
model training and on real fish stocks in the RAM Legacy Stock Assessment Database (RAMLDB 
v. 2.95; Ricard et al. 2012). We tested the two-stage catch-only model on both the simulated 
and RAMLDB stocks. The Rosenberg et al. (2014) simulated stocks represent a fully factorial set 
of 5760 simulated fisheries comprised of three fish life histories, three levels of initial biomass 
depletion, four exploitation scenarios, two levels of recruitment variability, two levels of 
recruitment autocorrelation, and two levels of measurement error, with each combination of 
parameters run through ten stochastic iterations (Supp. Table 1). The RAMLDB is a global 
database of catch data and stock assessment output, including reference points and time series 
of biomass and fishing mortality. We used 161 of the 193 RAMLDB stocks used in Free et al. 
(2017) to allow for the comparison of model performance against the refined ORCS approach 
(rORCS), a COM that has shown strong performance in estimating stock status. Invertebrate 
stocks and stocks with catch time series < 20 years long after trimming years of zero catch from 
the beginning of the time series were excluded for this analysis. 
 
3.2 Superensemble models 
 
3.2.1 Building the superensemble models 
 
We developed three sets of superensemble models to estimate stock status: (1) one model for 
all stocks (Super-1); (2) four models for stocks experiencing each of four effort dynamics (ED) 
scenarios (Supp. Table 2; Super-4); and (3) twelve models for stocks characterized by each of 
twelve combinations of three life history (LH) archetypes and four effort dynamics scenarios 
(Supp. Table 3; Super-12). 
 
Each superensemble model uses boosted regression trees (BRT) to estimate stock status 
(B/BMSY) from the B/BMSY estimates of five individual catch-only assessment models (Table 1) 
and two spectral properties of the catch time series. Boosted regression trees combine 
regression and machine learning, offer predictive power superior to other modeling methods 
(Elith et al. 2008), and produced the best superensemble model in Anderson et al. (2017). We 
included the 0.05 and 0.20 spectral densities of the scaled catch time series (catch divided by 
maximum catch) because they were shown to improve predictive performance in Anderson et 
al. (2017). Because B/BMSY is a ratio bounded at zero, we fit the BRT models using the log of 
B/BMSY and exponentiated predictions from the model. Thus, each of the superensemble 
models has the following conceptual structure: 
 

log 𝜃𝜃 = 𝑓𝑓(𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−17 ,𝛽𝛽𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶 ,𝛽𝛽𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐 ,𝛽𝛽𝑚𝑚𝑚𝑚𝐶𝐶𝑐𝑐 ,𝛽𝛽𝑧𝑧𝑧𝑧𝐶𝐶𝑧𝑧, 𝑆𝑆𝑆𝑆0.05, 𝑆𝑆𝑆𝑆0.20) 

where 𝜃𝜃 represents the superensemble estimate of B/BMSY, 𝛽𝛽’s represent the individual model 
estimates of B/BMSY, and SD’s are the spectral densities of the scaled catch time series. 



 
We divided the simulated stocks for model training (90% of data) and testing (10% of data) by 
withholding the 10th iteration of each simulation scenario. The training stocks were used to fit 
the BRT models while the test stocks were used to independently evaluate each model’s 
predictive ability. For each model, we performed an initial grid search for the BRT model 
parameters that minimize the RMSE using 10-fold cross validation to avoid overfitting 
(Appendix A). The grid search looked for the optimal number of trees, interaction depth, and 
learning rate, and the optimal parameters are listed in Table 2. The BRT models were fit using 
the caret (Kuhn 2016) and gbm (Ridgeway 2016) packages in R v.3.4.2 (R Core Team 2017). 

3.2.2 Testing the superensemble models 
 
We evaluated the ability of the BRT models to predict continuous (i.e., B/BMSY) and categorical 
(i.e., under, fully, or overexploited) stock status through testing on the simulated stocks 
withheld from model training and on the fully independent RAMLDB stocks. We followed the 
performance evaluation framework proposed by Jensen and Free (2017), briefly: continuous 
performance was measured in terms of rank-order correlation, accuracy (median absolute 
proportional error), and bias (median proportional error) and categorical performance was 
measured in terms of percent accuracy and Cohen’s kappa, which accounts for the probability 
of correct classification by chance. We compared the performance of the BRT models to 10 of 
the 11 COMs evaluated by Jensen and Free (2017) (Table 1). The original GBM-Superensemble 
model (Anderson et al. 2017) was excluded because it was trained to predict the mean B/BMSY 
over the last five years of the catch time series rather than B/BMSY in the final year. Three of 
these methods – SSP-2002, SSP-2013, and rORCS – predict only categorical stock status.  
 
Because the ED- and LH-ED-tailored BRT models require an expert to specify the underlying 
effort dynamics, we also evaluated the sensitivity of these models to the misspecification of 
effort history by comparing performance when misspecified with performance when correctly 
specified. The sensitivity analysis was only performed on the test simulated stocks and not on 
the RAMLDB stocks given the limited and unequal representation of the ED scenarios in the 
RAMLDB stocks (Supp. Table 3). 
 
To test the ED- and LH-ED-tailored BRT models on the RAMLDB stocks, we classified the 
RAMLDB stocks into life history and effort dynamics categories consistent with the simulated 
stocks (Supp. Tables 2-3). We classified life history categories based on taxonomic family 
according to Supp. Table 4. We only classified the RAMLDB stocks as experiencing “constant”, 
“increasing”, or “roller coaster” dynamics given that “biomass-coupled” effort can yield all 
three patterns. Classification was automated and proceeded as follows: First, we fit linear and 
two-slope segmented regression models to the effort time series of the RAMLDB stocks and 
identified the best regression model for each stock using AIC. We classified stocks whose effort 
histories were best described by segmented regressions with positive initial slopes and negative 
final slopes as experiencing “roller coaster” effort (Appendix B). The remaining stocks were 
classified based on the significance and direction of the slope of the linear regression on effort 
history: stocks with non-significant slopes were classified as experiencing “constant” effort and 



stocks with significantly positive or negative slopes were classified as experiencing “increasing” 
or “decreasing” effort, respectively (Appendix B). RAMLDB stocks experiencing “decreasing” 
effort were reclassified as experiencing “roller coaster” effort based on the assumption that 
high effort at the beginning of the available time series must have been preceded by an 
unmodelled period of increasing effort during the fishery development phase (Csirke & Sharp 
1984). Overall, we identified 11 constant, 41 increasing, and 109 roller coaster RAMLDB stocks 
(Supp. Table 3). 
 
3.3 Two-stage catch only model 
 
We developed a new two-stage catch only model that uses the Zhou-BRT method (Zhou et al 
2017) to inform a final year saturation prior for use in the cMSY-17 stock reduction analysis 
(Froese et al. 2017; saturation = 1 – depletion = B / B0 = B/BMSY / 2). Currently, cMSY-17 derives 
a final year saturation prior using simple rules based on the ratio of catch in the final year to the 
maximum catch where lower and higher catch ratios imply lower and higher saturation, 
respectively (Figure 13). Unfortunately, these priors exhibit low overlap with observed 
saturations from both the simulated and RAMLDB stocks (Figure 14), which is unsurprising 
given that catch ratios are poor indicators of stock status (Branch et al. 2011; Carruthers et al. 
2012; Jensen & Free 2017). For this reason, we use the saturation predictions of the Zhou-BRT 
method, which are more highly correlated with stock status (Jensen & Free 2017), to inform our 
final year saturation priors. Specifically, we estimate the mean saturation using the Zhou-BRT 
method, then identify the lower and upper bounds of a uniform prior using the 95% confidence 
interval of the skewed normal distributions described in Zhou et al. (2017): 
 

If S ≤ 0.5: f(ξ = max(SZBRT, 0) - 0.072, ω = 0.189, α = 0.763) 
If S > 0.5:  f(ξ = max(SZBRT, 0) + 0.179, ω = 0.223, α = 0.904) 

 
where ξ is the location parameter, ω is the scale parameter, and α is the skewness parameter 
and the lower bound is bounded at zero (Figure 14). These values are passed directly into the 
expert-defined lower and upper bounds for the uniform final year saturation in cMSY-17. The 
resilience values required by cMSY-17 were specified for the simulated and RAMLDB using the 
methods of Jensen & Free (2017). The performance of this new two-stage catch-only model 
was evaluated in the same framework described for the superensemble models. 
 
 
4. Results 
 
4.1 Superensemble model results 
 
The superensemble models were the best overall predictors of both continuous and categorical 
stock status when evaluated on the test simulated stocks (Figure 1) with the effort-tailored 
superensemble models (Super-4, Super-12) performing better than the overall superensemble 
model (Super-1; Figures 1-2). The LH-ED-tailored models (Super-12), which performed only 
slightly better than the ED-tailored models (Super-4), exhibited high rank-order correlation, low 



inaccuracy, and low bias in predicting B/BMSY and were both “good” and highly accurate 
classifiers of categorical stock status (Figure 1). Although the overall performance of the LH-ED 
tailored models on the RAMLDB stocks was not as outstanding as on the test simulated stocks, 
they were still consistently among the best performing methods. They exhibited the highest 
correlation and third lowest inaccuracy in their predictions of B/BMSY and were the second-best 
classifiers of stock status after the rORCS approach, which was trained on the RAMLDB (Figure 
1). 
 
Across the four ED scenarios in the test simulated stocks (i.e., grouping life histories), the LH-
ED-tailored models offered the best predictions of B/BMSY and were consistently among the 
best classifiers of stock status (Figure 3). When tested on the RAMLDB stocks, the LH-ED-
tailored models offered predictions of B/BMSY that were often the most highly correlated but in 
the middle of the evaluated COMs in terms of continuous inaccuracy and categorical 
classification performance (Figure 4).  
 
Across LH-ED scenarios in the test simulated stocks, the LH-ED-tailored models exhibited 
consistently low inaccuracy in B/BMSY predictions and were almost always the least inaccurate 
of the COMs evaluated. However, they were considerably more mixed in their rank-order 
correlation. While they were the best predictors for stocks in the LP-Coupled, LP-Increasing, and 
DE-Coupled scenarios, they were among the worst predictors in the SP-Constant and DE-Roller 
coaster scenarios (Figure 5). The categorical performance of the LH-ED-tailored models across 
LH-ED scenarios mirrored their continuous performance across scenarios, mainly: (1) they 
exhibited consistently high accuracy and were almost always the most accurate of the COMs 
evaluated but were frequently “poor” classifiers of stock status and (2) they performed well in 
the SP/LP/DE-Coupled and LP-Increasing scenarios (Figure 6). The LH-ED-tailored models 
exhibited a mixed performance when tested on the RAMLDB stocks. In only two scenarios did 
they offer the most highly correlated predictions of B/BMSY and in nearly all scenarios they 
exhibited inaccuracy values in the middle of the evaluated COMs (Figure 7). Similarly, they 
generally offered classification performance in the middle of the evaluated COMs (Figure 8). 
 
The B/BMSY predictions of both the ED- and LH-ED-tailored superensembles applied to the test 
simulated stocks become more inaccurate when effort dynamics are misspecified, even if they 
occasionally become more correlated (Figures 9-10). Similarly, the categorical status 
predictions of both sets of superensembles become less accurate when effort dynamics are 
misspecified, even if misspecifications occasionally result in a higher Cohen’s kappa (Figures 9 & 
11). When using the ED-tailored models, there are particularly extreme costs to prediction 
accuracy when misspecifying stocks experiencing “biomass-coupled” effort and stocks 
experiencing “increasing” effort (Figure 9). When using the LH-ED-tailored models, there are 
particularly extreme costs to prediction accuracy to misspecifying stocks experiencing 
“increasing” effort and to misspecifying stocks experiencing “roller coaster” effort as 
experiencing “constant” effort (Figures 10-11). Stocks experiencing “constant” effort are the 
least sensitive to misspecification when using both sets of models (Figures 9-11). 
 
4.2 Two-stage model results 



 
The two-stage catch-only model (2-Stage) performed worse on the test simulated stocks and 
RAMLDB stocks than the superensemble models (Figures 1 & 3) but performed better than the 
other two-stage models: OCOM and cMSY-17 (Figures 3 & 14). OCOM, which uses the same 
final year saturation prior as the two-stage model but employs a different stock reduction 
analysis, produces a heavily bimodal distribution of status estimates (Figure 14). cMSY-17, 
which uses the same stock reduction analysis as the two-stage model but with a different final 
year saturation prior, produces heavily biased status estimates (Figure 14). The two-stage 
model had no standout performances when tested on the ED or LH-ED scenarios in either the 
simulated or RAMLDB stocks (Figures 3-8).  
 
 
5. Discussion 
 
Although the effort-tailored superensembles are in many ways an improvement over other 
COMs, including the general superensemble (Super-1), they offer clear benefits only under a 
constrained set of stock characteristics, and the cross-validation performance of all COMs when 
applied to data from real stocks suggests reasons for caution.  In cross-validation testing against 
withheld simulated data (Fig. 1), both the effort-tailored (Super-4) and the effort and life 
history-tailored (Super-12) models perform substantially better than the next best performing 
model (Super-1).  The overall performance differences between Super-4 and Super-12 are 
minor, suggesting that additional fitting of superensembles to specific life histories offers little 
advantage over tailoring superensembles to effort dynamics alone. Testing COMs against real 
stocks from the RAMLDB offers an arguably more realistic assessment of their performance 
when applied to real data-poor stocks.  Here none of the COMs distinguished themselves as 
consistently reliable and performance was generally similar among a set of several of the best 
COMs.  For categorical performance (Fig. 1, bottom right), Super-4 and Super-12 were the best 
models.  Both had kappa approximately 0.2 (fair) and classification accuracy of 50% (not 
equivalent to a coin flip as there were three categories: underexploited, fully exploited, and 
overexploited).  While rORCS performed substantially better than other COMs, this represents a 
different type of comparison since rORCS was fit to (a different set of) stocks from the RAMLDB.  
For continuous performance (Fig. 1, bottom left), there was no single best model for both 
metrics, but Super-4 and Super-12 both did comparatively well by both metrics.  However, like 
most of the COMs, they had a negative bias: that is, they tended to slightly underestimate 
B/BMSY. 
 
Performance of the effort-tailored superensembles differed substantially depending on the 
underlying effort dynamics of the stock.  Several COMs performed well (rank order correlation > 
0.5) in continuous prediction of RAMLDB stocks with no significant F trend (the constant effort 
scenario), with effort-tailored models Super-4 and Super-12 showing the highest rank order 
correlation (Fig. 4).  This is not surprising since if effort is stationary (as well as catchability and 
productivity), any trend in catch is likely to reflect a trend in biomass.  In contrast, although 
Super-4 and Super-12 showed the highest rank order correlation, none of the COMs had a rank 
order correlation > 0.5 for either the increasing or roller coaster F stocks in the RAMLDB.    



 
Applying an effort-tailored superensemble to catch data simulated using a different effort 
scenario always results in poorer performance, though the extent of this performance 
degradation depends on the specific effort scenario.  At the extreme, the superensemble fit to 
the constant effort scenario performs relatively poorly even on simulated data derived from a 
constant effort pattern (Fig. 9).  When applied to catch data simulated from other effort 
scenarios both continuous and categorical performance is very poor.  Thus, this particular 
superensemble should only be used when there is high certainty that effort has been constant, 
and even then predictions are highly uncertain.  The best performing of the effort-tailored 
superensembles is the one fit to simulated data from the biomass coupled effort dynamics 
scenario.  It performs well in both continuous (rank order correlation = 0.81, inaccuracy = 0.11) 
and categorical (accuracy = 88%, kappa = 0.71) cross-validation (Fig. 9).  However, even this 
model shows poor predictive performance when applied to data generated from other effort 
scenarios. 
 
The two-stage model that we developed and tested here performs better than other two-stage 
or individual COMs, though not as well as the superensembles.  Two of the other methods, 
cMSY and OCOM, are also inherently two-stage approaches in which either a model (OCOM) or 
a simple catch ratio (cMSY) are used to place a constraint (an informative uniform prior) on 
depletion (or saturation) in the final year.  OCOM predictions were bimodal (Fig. 14) with a 
notable gap in predicted B/BMSY between approximately 1.0 and 1.3.  Structurally, OCOM and 
the two-stage model that we developed are quite similar.  Both use Zhou-BRT to constrain 
depletion (or saturation) in the final year coupled with a stock reduction analysis.  The relatively 
poor performance of all three of these two-stage COMs compared to the superensembles is 
most likely a result of the strong influence of the depletion constraint combined with an 
inability to adequately estimate this constraint (Fig. 13). 
 
In summary, if a COM is to be used for status estimation, and effort trends can be reliably 
categorized, we recommend the use of Super-4.  However, testing against RAMLDB stocks 
indicates that accuracy is modest and some bias may exist (i.e., a tendency to slightly 
underestimate B/BMSY).  We cannot yet recommend any COMs as a reliable tool for providing 
management advice without thorough testing in a management strategy evaluation (MSE) 
framework. 
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Tables & Figures 
 
Table 1. Catch-only stock assessment methods. 

  Method References Data input/output Brief description 
1 rORCS 

Refined ORCS approach 
Berkson et al. 2011 
Free et al. 2017 

In: Catch, 12 questions 
Out: Exploitation status, OFL 

Uses a boosted classification tree model 
trained on the RAMLDB to predict status from 
12 stock- and fishery-related predictors 

2 cMSY-2013 
Catch-MSY 

Martell & Froese 2013 
Rosenberg et al. 2014 

In: Catch, resilience 
Out: B/BMSY, MSY, B, BMSY 

Uses a stock reduction analysis with priors for 
r, k, and initial/final year depletion derived 
from resilience to estimate status 

3 cMSY-2017*† 
Updated catch-MSY 

Froese et al. 2017 In: Catch, resilience 
Out: B/BMSY, all MSY ref points 

Updates the cMSY-2013 stock reduction 
analysis with a new algorithm for identifying 
probable r-k pairs to estimate status 

4 COM-SIR* 
Catch-only-model with  
sampling importance resampling 

Vasconcellos & Cochrane 2005 
Rosenberg et al. 2014 

In: Catch, resilience 
Out: B/BMSY 

Uses a coupled harvest-dynamics model fit 
using a sampling importance resampling 
algorithm to estimate status 

5 SSCOM* 
State-space catch-only model 

Thorson et al. 2013 In: Catch, resilience 
Out: B/BMSY 

Uses a coupled harvest-dynamics model fit 
using a Bayesian hierarchical state-space 
framework to estimate status 

6 SSP-2002 
Stock status plots 

Froese & Kesner-Reyes 2002 In: Catch 
Out: Development status 

Uses simple rules that compare the final year's 
catch to the maximum catch to estimate status 

7 SSP-2013 
Updated stock status plots 

Kleisner et al. 2013 
Kleisner & Pauly 2011 

In: Catch 
Out: Development status 

Updates the rules of SSP-2002 to utilize the 
minimum catch occurring after the maximum 
catch to estimate status 

8 mPRM* 
Modified  
panel regression model 

Costello et al. 2012 
Anderson et al. 2017 

In: Catch, taxonomic group 
Out: B/BMSY 

Uses a panel regression model trained on the 
RAMLDB to predict status from characteristics 
of the catch time series and taxonomic group 

9 Zhou-BRT*† 
Catch-only  
boosted regression trees 

Zhou et al. 2017 In: Catch 
Out: Saturation 

Uses a boosted regression tree model trained 
on the RAMLDB to predict status from 38 catch 
history statistics 

10 Zhou-OCOM 
Optimized catch-only model 

Zhou et al. 2016 In: Catch, natural mortality (M) 
Out: Saturation, MSY 

Uses a stock reduction analysis with priors for r 
and final year depletion derived from M and 
saturation from Zhou-BRT to estimate status 

 
* used to develop the superensemble models 
† coupled to create the two-stage catch-only model 
 
  



Table 2. Optimal BRT model parameters and cross-validation goodness of fit statistics for the superensemble models. 
 

Model 
# of 
trees 

Interaction 
depth 

Learning 
rate RMSE r2 

Overall model (n=1) 7500 10 0.005 0.50 0.37 

ED models (n=4)      
Constant F 5000 12 0.001 0.32 0.21 
Biomass-coupled F 4000 12 0.005 0.27 0.76 
Increasing F 8500 12 0.001 0.26 0.60 
Rollercoaster F 8000 12 0.01 0.21 0.62 

LH-ED models (n=12)      
Small pelagic      

Constant F 3500 6 0.001 0.27 0.17 
Biomass-coupled F 4000 12 0.001 0.20 0.31 
Increasing F 6000 10 0.001 0.27 0.53 
Rollercoaster F 10000 12 0.005 0.21 0.67 

Large pelagic      
Constant F 100 12 0.005 0.33 0.03 
Biomass-coupled F 4500 10 0.001 0.19 0.91 
Increasing F 3500 12 0.001 0.22 0.46 
Rollercoaster F 10000 10 0.01 0.16 0.52 

Demersal      
Constant F 3000 12 0.001 0.31 0.32 
Biomass-coupled F 4000 12 0.005 0.34 0.73 
Increasing F 6000 12 0.001 0.26 0.65 
Rollercoaster F 7500 6 0.005 0.21 0.71 

 



 

 
 
Figure 1. The continuous and categorical performance of COMs evaluated on the simulated 
stocks withheld from the BRT model training (n=535) and (2) RAMLDB stocks (n=118).  In the 
continuous performance plots, the best performing methods are indicated by high rank-order 
correlation and low inaccuracy (top-left corner). In the categorical performance plots, the best 
performing methods are indicated by high Cohen’s kappa and high accuracy (top-right corner). 
  



Figure 2. Observed stock status versus stock status predicted by the new superensemble and 
two-stage models for the test simulated stocks (n=576) and RAMLDB stocks (n=161). 
  



 
 
Figure 3. The continuous and categorical performance of COMs evaluated on the test simulated 
stocks by effort dynamics (144 stock max per scenario). In the continuous performance plots, 
the best performing methods are indicated by high rank-order correlation and low inaccuracy 
(top-left corner). In the categorical performance plots, the best performing methods are 
indicated by high Cohen’s kappa and high accuracy (top-right corner). Samples sizes are shown 
in the top-right corner of each plot and are sometimes less than the 144 stock maximum due to 
failed convergence by one or more of the evaluated COMs. 
 
  



 
 
Figure 4. The continuous and categorical performance of COMs evaluated on the RAMLDB 
stocks by effort dynamics (note: sample sizes are not uniform). In the continuous performance 
plots, the best performing methods are indicated by high rank-order correlation and low 
inaccuracy (top-left corner). In the categorical performance plots, the best performing methods 
are indicated by high Cohen’s kappa and high accuracy (top-right corner). Samples sizes are 
shown in the top-right corner of each plot and are sometimes less than the maximum possible 
due to failed convergence by one or more of the evaluated COMs.  



 
 
Figure 5. The continuous performance of COMs evaluated on the test simulated stocks by LH-
ED couple (48 stock max per scenario). The best performing methods are indicated by high 
rank-order correlation and low inaccuracy (top-left corner). To maximize clarity, only the 
superensemble and two-stage catch-only models are labelled. Samples sizes are shown in the 
top-right corner of each plot and are sometimes less than the 48 stock maximum due to failed 
convergence by one or more of the evaluated COMs. 
  



 
 
Figure 6. The categorical performance of COMs evaluated on the test simulated stocks by LH-ED 
couple (48 stock max per scenario). The best performing methods are indicated by high Cohen’s 
kappa and high accuracy (top-right corner). To maximize clarity, only the superensemble and 
two-stage catch-only models are labelled. Samples sizes are shown in the bottom-right corner 
of each plot and are sometimes less than the 48 stock maximum due to failed convergence by 
one or more of the evaluated COMs. Note: Cohen’s kappa cannot be estimated for classifiers 
that are 100% accurate (i.e., Cohen’s kappa can never equal 1.0); however, classifiers achieving 
100% accuracy were awarded a Cohen’s kappa of 1.0 to allow visualization.  
 
 
  



 
 
Figure 7. The continuous performance of COMs evaluated on the RAMLDB stocks by LH-ED 
couple (note: sample sizes are not uniform). The best performing methods are indicated by high 
rank-order correlation and low inaccuracy (top-left corner). To maximize clarity, only the 
superensemble and two-stage catch-only models are labelled. Samples sizes are shown in the 
top-right corner of each plot and are sometimes less than the maximum possible due to failed 
convergence by one or more of the evaluated COMs. 
  



 

 
 
Figure 8. The categorical performance of COMs evaluated on the RAMLDB stocks by LH-ED 
couple (note: sample sizes are not uniform). The best performing methods are indicated by high 
Cohen’s kappa and high accuracy (top-right corner). To maximize clarity, only the 
superensemble and two-stage catch-only models are labelled. Samples sizes are shown in the 
bottom-right corner of each plot and are sometimes less than the maximum possible due to 
failed convergence by one or more of the evaluated COMs. 
  



 
 
Figure 9. The sensitivity of continuous (inaccuracy and rank-order correlation) and categorical 
(accuracy and Cohen’s kappa) predictive performance of the ED superensemble models to the 
misspecification of the effort dynamics experienced by the test simulated stocks. The grey cells 
along the diagonal from top-left to bottom-right show the performance metric when effort 
dynamics are correctly specified. The within-row, off-diagonals cells show the performance 
metric when effort dynamics are incorrectly specified and the shading color indicates the 
change in performance relative to the correctly specified model (red=performance weakens, 
blue=performance improves, white=performance does not change).  



 
 
Figure 10. The sensitivity of continuous predictive performance (inaccuracy and rank-order 
correlation) of the LH-ED superensemble models to the misspecification of the effort dynamics 
experienced by the test simulated stocks. The grey cells along the diagonal from top-left to 
bottom-right show the performance metric when effort dynamics are correctly specified. The 
within-row, off-diagonals cells show the performance metric when effort dynamics are 
incorrectly specified and the shading color indicates the change in performance relative to the 
correctly specified model (red=performance weakens, blue=performance improves, 
white=performance does not change). In these comparisons, the life history category was 
always correctly specified.  



 
 
Figure 11. The sensitivity of categorical predictive performance (accuracy and Cohen’s kappa) of 
the LH-ED superensemble models to the misspecification of the effort dynamics experienced by 
the test simulated stocks. The grey cells along the diagonal from top-left to bottom-right show 
the performance metric when effort dynamics are correctly specified. The within-row, off-
diagonals cells show the performance metric when effort dynamics are incorrectly specified and 
the shading color indicates the change in performance relative to the correctly specified model 
(red=performance weakens, blue=performance improves, white=performance does not 
change). In these comparisons, the life history category was always correctly specified. 
  



Figure 12. Visualization of the uniform final year saturation priors used by cMSY-17 and the 
new two-stage catch-only model. The cMSY-17 saturation priors are derived from catch ratio 
(last catch / maximum catch) in the final year while the two-stage model priors are derived 
from the zBRT saturation predictions in the final year. 
  



 
 
Figure 13. The suitability of the saturation priors used by cMSY-17 and the two-stage catch-only 
model for describing terminal year saturation for the simulated and RAMLDB stocks. The 
percentage of terminal year saturations contained by the prior is shown in the top-left corner.  
  



 
 
Figure 14. Observed stock status versus stock status predicted by four catch-only models for 
the test simulated stocks (n=576) and RAMLDB stocks (n=161). The two-stage model was 
created by coupling zBRT and cMSY-17 and OCOM is similar in structure. 



Supporting Tables & Figures 
 
Supp. Table 1. Factorial design of the Rosenberg et al. (2014) simulated stocks. 
 

Factor # of levels Levels 

Life history 3 Demersal, small pelagic, or large pelagic 
Initial biomass depletion 3 100%, 70%, or 40% of carrying capacity 
Exploitation dynamics 4 Constant, biomass-coupled, increasing, or roller coaster rates 
Recruitment variability 2 Low or high variability 
Recruitment autocorrelation 2 With or without autocorrelation 
Catch measurement error 2 With or without catch measurement error 
Time series length 2 20 or 60 years 
Iterations 10 Iterations for each combination of the above parameters 

Total # of stocks: 5760  
 
 
  



Supp. Table 2. Resilience and natural mortality (M) values for the life histories represented in the Rosenberg et al. (2014) simulated 
stocks. 
 

Life history category Generic name Resilience Linf (cm) Tmax (yr) M (yr-1)* 

Demersal Gadoid low 70 20 0.315 
Small pelagic Clupeoid medium 30 8 0.729 
Large pelagic Scombrid low 150 20 0.315 

 
* Estimated using the tmax-based Hoenig (1983) method: M = 4.899*tmax

-0.916 

 

 
  



Supp. Table 3. Effort dynamics scenarios driving population dynamics in the Rosenberg et al. (2014) simulated stocks. 
 

    # of stocks     

Effort dynamics scenario Code Simulated RAMLDB Description 
Constant ED0 1440 11 Harvest rate remains constant irrespective of biomass (e.g., 

bycatch species harvest) 
Biomass-coupled ED0.6 1440 --- Harvest rate has a dynamic relationship with biomass, see 

Rosenberg et al. (2014) for more details (e.g., open-access 
single-species harvest) 

Increasing (one-way trip) OW 1440 41 Harvest rate increases 5% per year to 80% of the harvest 
rate at which the stock crashes (e.g., a stock where harvest 
rate has continually increased) 

Roller coaster (dome-shaped) RC 1440 109 Harvest rate increases 25% per year to 80% of harvest rate 
at which the stock crashes, stays at this level for five years, 
then decreases to FMSY levels by 30% per year (e.g., a stock 
where management began following extensive depletion) 

  



Supp. Table 4. Mapping RAMLDB taxonomic families to the life histories represented in the simulated stocks. 
 

Life history 
# of 
stocks Families 

Demersal 116 Anoplopomatidae, Cheilodactylidae, Cottidae, Epigonidae, Gadidae, 
Hexagrammidae, Lutjanidae, Malacanthidae, Merlucciidae, Merlucciinae, 
Ophidiidae, Oreosomatidae, Paralichthyidae, Platycephalidae, Pleuronectidae, 
Rajidae, Scorpaenidae, Serranidae, Sparidae, Trachichthyidae, Uranoscopidae 

Large pelagic 27 Istiophoridae, Pomatomidae, Sciaenidae, Scombridae, Xiphiidae 
Small pelagic 18 Arripidae, Carangidae, Centrolophidae, Clupeidae, Engraulidae, Gempylidae, 

Sillaginidae, Stromateidae 

 



 
 
Supp. Figure 1. Model tuning curves showing the average root mean square error (RMSE) for 
each combination of candidate BRT model parameters (learning rate, interaction depth, # of 
trees) for the overall superensemble model. The optimal combination of model parameters 
(marked and labeled) is the combination that minimizes the RMSE. 
  



 
 
Supp. Figure 2. Model tuning curves showing the average root mean square error (RMSE) for 
each combination of candidate BRT model parameters (learning rate, interaction depth, # of 
trees) each of the four ED-tailored superensemble models. The optimal combination of model 
parameters (marked and labeled) is the combination that minimizes the RMSE. 
 
  



Appendix captions 
 
Appendix A. Model tuning curves showing the average root mean square error (RMSE) for each 
combination of candidate BRT model parameters (learning rate, interaction depth, # of trees) 
for each of the twelve LH-ED-tailored superensemble models. The optimal combination of 
model parameters (marked and labeled) is the combination that minimizes the RMSE. 
 
Appendix B. Illustration of the methods used to classify the effort dynamics experienced by the 
RAMLDB stocks. In each plot, the solid dark grey line indicates fishing effort over time and the 
dotted dark grey line indicates biomass over time. Early in the analysis, a Spearman’s 
correlation between fishing effort and biomass lagged by one year greater than 0.3 was used to 
classify stocks experiencing “biomass-coupled” effort. The Spearman’s correlations are printed 
in the top-right corner and are printed in red if greater than the 0.3 threshold. However, we 
decided that experts would be unable to accurately identify “biomass-coupled” effort and 
reclassified these stocks (the reclassification is listed in parentheses and italics) using linear and 
two-slope segmented regression. Linear and two-slope segmented regressions fit to the effort 
time series are shown as thick solid and thick dashed lines, respectively. The best regression 
model, determined through AIC, is shown in red. Details on how these regression models were 
used to classify effort dynamics are described in the text. The stocks are grouped by effort 
dynamics classification and sorted by descending effort-biomass correlation. 
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year

bt
ou

se

WPOLLEBS

1977 2012

0.
08

0.
45 constant 0.12

year

bt
ou

se

SURFMATLC

1981 2008

0.
01

0.
05 constant 0.12

year

bt
ou

se

ATKABSAI

1977 2010

0.
04

0.
6 increasing 0.11

year

bt
ou

se

SKJCWPAC

1972 2010

0.
05

0.
51 increasing 0.11

year

bt
ou

se

SABLEFPCOAST

1900 2010

0
0.

07 increasing 0.11

year

bt
ou

se

OROUGHYNZMEC

1909 2011

0
2.

76 increasing 0.1

year

bt
ou

se

RSARDINWA

1990 2010

0.
17

1.
02 increasing 0.09

year

bt
ou

se

SARDINWA

1990 2010

0.
17

1.
02 increasing 0.08

year

bt
ou

se

PCODBSAI

1977 2012

0.
04

0.
39 increasing 0.07

year

bt
ou

se

PHAKEPCOAST

1966 2011

0.
02

0.
42 increasing 0.06

year

bt
ou

se

BMARLINPAC

1952 2006

0.
03

0.
39 increasing 0.06

year

bt
ou

se

KELPGREENLINGORECOAST

1980 2004

0
0.

14 increasing 0.05

year

bt
ou

se

LNOSESKAPCOAST

1915 2007

0
0.

08 increasing 0.03

year

bt
ou

se

NZLINGWSE

1968 2007

0
0.

06 increasing 0.02

year

bt
ou

se

BIGEYEWPO

1952 2006

0.
02

0.
49 increasing −0.01

year

bt
ou

se
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CABEZORECOAST

1973 2008

0.
07

1.
03 increasing −0.01

year

bt
ou

se

BIGEYECWPAC

1952 2010

0.
01

0.
31 increasing −0.01

year
bt

ou
se

BLACKOREOPR

1974 2009

0
0.

37 increasing −0.03

year

bt
ou

se

ARFLOUNDPCOAST

1916 2006

0
0.

18 increasing −0.04

year

bt
ou

se

SCMPBP

1985 2010

0
0.

19 increasing −0.04

year

bt
ou

se

WAREHOUWSE

1984 2006

0
0.

96 increasing −0.06

year

bt
ou

se
PAUANPAU5A

1965 2010

0
0.

41 increasing −0.07

year

bt
ou

se

SWORDIO

1950 2009

0
0.

12 increasing −0.1

year

bt
ou

se

SOUTHHAKESA

1974 2011

0
0.

08 increasing −0.12

year

bt
ou

se

SMOOTHOREOBP

1983 2008

0
0.

28 increasing −0.16

year

bt
ou

se

STMARLINNPAC

1952 2004

0.
09

1.
04 increasing −0.18

year

bt
ou

se

ALBASPAC

1965 2007

0.
01

0.
09 increasing −0.19

year

bt
ou

se

SKJCIO

1950 2009

0
0.

6 increasing −0.21

year

bt
ou

se

YFINCWPAC

1952 2010

0
0.

41 increasing −0.22

year

bt
ou

se

GSTRGZRSTA7

1964 2007

0
0.

97 increasing −0.22

year

bt
ou

se

CROCKWCVANISOGQCI

1945 2009

0.
01

0.
21 increasing −0.22

year

bt
ou

se

TARAKNZ

1932 2007

0
0.

12 increasing −0.24

year

bt
ou

se

NZLINGESE

1968 2007

0
0.

11 increasing −0.26

year

bt
ou

se

SMOOTHOREOCR

1978 2010

0
0.

12 increasing −0.26

year

bt
ou

se

MORWONGSE

1913 2007

0
0.

24 increasing −0.26

year

bt
ou

se

BKCDLFENI

1923 2009

0
1.

02 increasing −0.26

year

bt
ou

se

TREVALLYTRE7

1944 2005

0
0.

14 increasing −0.31

year

bt
ou

se

SMOOTHOREOEPR

1973 2006

0
0.

32 increasing −0.33

year

bt
ou

se

SPANMACKGM

1886 2011

0
0.

61 increasing −0.33

year

bt
ou

se
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DEEPCHAKESA

1917 2013

0
0.

47 increasing −0.34

year

bt
ou

se

YFINEIO

1972 2009

0
0.

14 increasing −0.34

year
bt

ou
se

BIGEYEIO

1952 2009

0
0.

32 increasing −0.35

year

bt
ou

se

BNSNZ

1935 2011

0
0.

28 increasing −0.36

year

bt
ou

se

WINFLOUN5Z

1982 2010

0.
15

1.
39 roller coaster −0.36

year

bt
ou

se

WINFLOUNSNEMATL

1981 2010

0.
05

1.
38 roller coaster −0.37

year

bt
ou

se
WPOLLAI

1978 2012

0
0.

47 roller coaster −0.37

year

bt
ou

se

AMPL5YZ

1980 2007

0.
06

1.
07 roller coaster −0.37

year

bt
ou

se

PCODWCVANI

1956 2001

0.
05

0.
87 roller coaster −0.38

year

bt
ou

se

WEAKFISHATLC

1981 2008

0.
15

0.
68 roller coaster −0.39

year

bt
ou

se

DSOLEGA

1984 2009

0
0.

1 roller coaster −0.39

year

bt
ou

se

CTRACSA

1949 2012

0
0.

24 roller coaster −0.39

year

bt
ou

se

HADGB

1960 2010

0.
07

0.
8 roller coaster −0.39

year

bt
ou

se

YELLSNEMATL

1973 2007

0.
4

3.
78 roller coaster −0.39

year

bt
ou

se

GAGGM

1963 2012

0.
07

1.
08 roller coaster −0.41

year

bt
ou

se

BLACKOREOWECR

1973 2007

0
0.

16 roller coaster −0.42

year

bt
ou

se

REYEROCKGA

1977 2009

0
0.

11 roller coaster −0.45

year

bt
ou

se

ALBANPAC

1966 2009

0.
04

0.
18 roller coaster −0.45

year

bt
ou

se

TANNERCRABBSAI

1965 2012

0
2.

7 roller coaster −0.47

year

bt
ou

se

GHALBSAI

1960 2007

0.
02

0.
38 roller coaster −0.48

year

bt
ou

se

SNOWCRABBS

1978 2012

0.
15

3.
22 roller coaster −0.49

year

bt
ou

se

ATBTUNAWATL

1970 2009

0.
04

0.
21 roller coaster −0.49

year

bt
ou

se

YEGROUPGM

1975 2009

0.
01

0.
2 roller coaster −0.5

year

bt
ou

se

CODGB

1978 2011

0.
23

1.
27 roller coaster −0.51

year

bt
ou

se
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WPOLLGA

1970 2014

0.
03

0.
41 roller coaster −0.51

year

bt
ou

se

TIGERFLATSE

1913 2005

0
0.

47 roller coaster −0.55

year
bt

ou
se

GOPHERSPCOAST

1965 2004

0
0.

11 roller coaster −0.57

year

bt
ou

se

SBT

1950 2010

0
0.

46 roller coaster −0.57

year

bt
ou

se

SABLEFEBSAIGA

1960 2010

0
0.

19 roller coaster −0.58

year

bt
ou

se

BSBASSMATLC

1968 2007

0.
21

1.
41 roller coaster −0.58

year

bt
ou

se
WITFLOUN5Y

1982 2007

0.
23

1.
32 roller coaster −0.59

year

bt
ou

se

PERCHEBSAI

1960 2010

0
0.

42 roller coaster −0.6

year

bt
ou

se

REDFISHSPP3LN

1959 2007

0
0.

64 roller coaster −0.6

year

bt
ou

se

WHAKEGBGOM

1963 2007

0.
08

0.
74 roller coaster −0.61

year

bt
ou

se

WPOLLWBS

1970 2008

0.
01

0.
38 roller coaster −0.61

year

bt
ou

se

STMARLINNEPAC

1975 2009

0.
18

0.
59 roller coaster −0.61

year

bt
ou

se

ALBANATL

1950 2007

0.
14

0.
38 roller coaster −0.62

year

bt
ou

se

POLL5YZ

1970 2009

0.
04

0.
58 roller coaster −0.62

year

bt
ou

se

NZLINGLIN3−4

1968 2011

0
0.

16 roller coaster −0.63

year

bt
ou

se

WROCKPCOAST

1916 2010

0
0.

29 roller coaster −0.66

year

bt
ou

se

YELL3LNO

1965 2008

0
0.

95 roller coaster −0.66

year

bt
ou

se

SCMPWHB

1985 2010

0
0.

62 roller coaster −0.69

year

bt
ou

se

NZLINGLIN6b

1980 2006

0
0.

12 roller coaster −0.7

year

bt
ou

se

STFLOUNSPCOAST

1970 2004

0
0.

38 roller coaster −0.7

year

bt
ou

se

WAREHOUESE

1984 2006

0
0.

24 roller coaster −0.7

year

bt
ou

se

SSTHORNHPCOAST

1962 2004

0
0.

04 roller coaster −0.71

year

bt
ou

se

GEMFISHNZ

1952 2007

0
0.

23 roller coaster −0.73

year

bt
ou

se

RGROUPSATL

1976 2008

0.
22

1.
3 roller coaster −0.73

year

bt
ou

se
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RPORGYSATLC

1972 2011

0.
04

1.
25 roller coaster −0.73

year

bt
ou

se

COWCODSCAL

1900 2015

0
0.

65 roller coaster −0.73

year
bt

ou
se

STMARLINWCNPAC

1975 2010

0.
52

1.
65 roller coaster −0.74

year

bt
ou

se

STFLOUNNPCOAST

1970 2004

0
0.

31 roller coaster −0.74

year

bt
ou

se

SNOWGROUPSATLC

1974 2012

0.
03

0.
81 roller coaster −0.74

year

bt
ou

se

SMOOTHOREOSLD

1973 2007

0
0.

5 roller coaster −0.75

year

bt
ou

se
NRSOLEEBSAI

1975 2012

0.
02

0.
64 roller coaster −0.76

year

bt
ou

se

OROUGHYSE

1978 2006

0
0.

78 roller coaster −0.76

year

bt
ou

se

BGROCKPCOAST

1950 2010

0
0.

18 roller coaster −0.76

year

bt
ou

se

SCALL5ZMAB

1975 2013

0.
17

1.
73 roller coaster −0.76

year

bt
ou

se

CMACKPCOAST

1929 2008

0
0.

43 roller coaster −0.76

year

bt
ou

se

ACADREDGOMGB

1913 2007

0
0.

98 roller coaster −0.77

year

bt
ou

se

LSTHORNHPCOAST

1964 2012

0
0.

13 roller coaster −0.77

year

bt
ou

se

CODVIa

1981 2012

0.
67

1.
16 roller coaster −0.77

year

bt
ou

se

PACBTUNA

1952 2007

0.
11

0.
76 roller coaster −0.77

year

bt
ou

se

WMARLINATL

1956 2010

0
0.

32 roller coaster −0.78

year

bt
ou

se

TILEMATLC

1971 2012

0
1.

52 roller coaster −0.8

year

bt
ou

se

CROCKPCOAST

1916 2010

0
0.

26 roller coaster −0.8

year

bt
ou

se

VSNAPSATLC

1946 2007

0
2.

68 roller coaster −0.81

year

bt
ou

se

GEMFISHSE

1966 2007

0
0.

08 roller coaster −0.81

year

bt
ou

se

TILESATLC

1961 2002

0
0.

25 roller coaster −0.82

year

bt
ou

se

ATHAL5YZ

1800 2007

0
0.

8 roller coaster −0.83

year

bt
ou

se

SMOOTHOREOWECR

1965 2009

0
0.

3 roller coaster −0.83

year

bt
ou

se

FLSOLEBSAI

1977 2010

0.
01

0.
33 roller coaster −0.84

year

bt
ou

se
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SCUPNWATLC

1984 2007

0.
05

1.
35 roller coaster −0.84

year

bt
ou

se

LINGCODNPCOAST

1928 2008

0
0.

68 roller coaster −0.85

year
bt

ou
se

SILVERFISHSE

1978 2006

0
0.

79 roller coaster −0.86

year

bt
ou

se

ARFLOUNDBSAI

1976 2010

0.
01

0.
17 roller coaster −0.86

year

bt
ou

se

SWHITSE

1945 2007

0
0.

61 roller coaster −0.86

year

bt
ou

se

BSBASSSATL

1978 2010

0.
29

1.
6 roller coaster −0.86

year

bt
ou

se
CHILISPCOAST

1892 2006

0
0.

2 roller coaster −0.86

year

bt
ou

se

DSOLEPCOAST

1910 2010

0
0.

06 roller coaster −0.86

year

bt
ou

se

RSNAPSATLC

1955 2009

0.
03

1.
31 roller coaster −0.87

year

bt
ou

se

BLACKGROUPERGMSATL

1986 2008

0.
07

0.
35 roller coaster −0.87

year

bt
ou

se

HOKIWNZ

1970 2012

0
0.

43 roller coaster −0.87

year

bt
ou

se

YSOLEBSAI

1964 2009

0.
05

0.
83 roller coaster −0.87

year

bt
ou

se

CHAKESA

1917 2013

0
0.

43 roller coaster −0.87

year

bt
ou

se

LINGCODSPCOAST

1928 2008

0
0.

6 roller coaster −0.88

year

bt
ou

se

SPANMACKSATLC

1950 2011

0.
58

6.
03 roller coaster −0.89

year

bt
ou

se

AUSSALMONNZ

1975 2006

0.
03

0.
26 roller coaster −0.89

year

bt
ou

se

HOKIENZ

1970 2012

0
0.

34 roller coaster −0.89

year

bt
ou

se

SFLOUNMATLC

1982 2012

0.
26

2.
05 roller coaster −0.89

year

bt
ou

se

NZSNAPNZ8

1931 2005

0
0.

44 roller coaster −0.9

year

bt
ou

se

PCODGA

1980 2010

0.
04

0.
51 roller coaster −0.91

year

bt
ou

se

NZLINGLIN5−6

1968 2011

0
0.

07 roller coaster −0.91

year

bt
ou

se

PSOLEPCOAST

1930 2011

0.
01

0.
53 roller coaster −0.92

year

bt
ou

se

BLACKROCKNPCOAST

1915 2006

0
0.

25 roller coaster −0.93

year

bt
ou

se

CABEZSCAL

2000 2008

0.
03

0.
17 roller coaster −0.93

year

bt
ou

se
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ESOLEPCOAST

1876 2006

0
0.

26 roller coaster −0.94

year

bt
ou

se

SABLEFPCAN

1965 2010

0
0.

25 roller coaster −0.95

year
bt

ou
se

BIGEYEEPAC

1975 2010

0.
07

0.
41 roller coaster −0.95

year

bt
ou

se

NZLINGLIN72

1972 2007

0
0.

12 roller coaster −0.96

year

bt
ou

se

NZLINGLIN7WC

1972 2008

0
0.

06 roller coaster −0.96

year

bt
ou

se

PAUASPAU5A

1965 2009

0
0.

38 roller coaster −0.98

year

bt
ou

se
PAUAPAU7

1965 2011

0
0.

97 roller coaster −0.99

year

bt
ou

se
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