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1  |  INTRODUC TION

Understanding the status of fish stocks is a prerequisite for an ef-
fective management system. Given the expense and complexity of 
surveying the oceans, for many fisheries, commercial catch data 
are the only source of information available to the public. Catch is 
often defined as the sum of both fisheries landings and discards, but 
throughout this paper, we use it as a broad term referring to any 
catch data available to fisheries scientists and managers, be it in-
clusive of discards or not. The Food and Agriculture Organization 
(FAO) of the United Nations maintains a global database of fisheries 
landings that includes over 20,000 individual catch histories by FAO 
statistical region, country and taxon. In contrast, the RAM Legacy 
Stock Assessment Database (RLSADB, www.ramle gacy.org), which 
includes most of the publicly available stock assessments conducted 

around the world, contains information on just over 1,300 stocks. 
There is a large gap then between what is being caught and what is 
assessed in a formal way, but there is an alluring intuitive connec-
tion between the history of catches and the state of a fishery. A fish 
stock can sustain much lower catches when it is severely depleted 
(e.g. when biomass B much less than the biomass that could produce 
maximum sustainable yield BMSY) than when it is more abundant 
(closer to B/BMSY of one). The expectation that trends in catches 
should provide information about stock status, combined with a 
lack of survey data typically needed for formal stock assessments, 
has given rise to numerous efforts to assess the status of a stock 
based largely or exclusively on catch histories, so- called “catch- only 
models.” However, despite this long history of development and use, 
catch- only models have yet to provide a robust means of estimating 
either regional or stock- specific status, usually defined as biomass or 
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fishing mortality rates relative to a reference point (Free et al., 2020; 
Ovando et al., 2021). In this paper, we explore the history of catch- 
only stock assessment methods, summarize evidence as to their 
performance and demonstrate why catch- only models have limited 
potential as a means of stock assessment.

2  |  A HISTORY OF C ATCH-  ONLY MODEL S

To sustainably manage fisheries to produce food, employment and 
profits, we need to understand the status of fish stocks, especially so 
we can identify when they have been depleted to a level where the po-
tential yield is reduced, requiring management actions to rebuild them. 
We also want to identify which stocks have been so reduced in abun-
dance that they are of conservation concern and should be included 
in national or international endangered species listings such as CITES 
(Convention on International Trade in Endangered Species of Wild 
Fauna and Flora) or the IUCN (International Union for the Conservation 
of Nature) Red List. In the 20th century, many fisheries management 
agencies began tracking the changing abundance of many stocks 
through various methods including scientific surveys, tagging pro-
grammes and commercial trends in catch per unit effort (CPUE). These 
abundance trend data are now available for over 1,300 fish stocks con-
stituting roughly 50% of global marine fish landings in the RAM Legacy 
Stock Assessment Database (Hilborn et al., 2020; Ricard et al., 2012).

Unfortunately, we do not have abundance trend data for thou-
sands of other fish stocks that are vital to many people's food secu-
rity and incomes. Instead, catch histories are the most commonly 
available data type for fisheries across the globe. Data on catch 
have been recorded by various agencies since the 19th century, and 
commercial records have been used to reconstruct the historical 
catch for some fisheries for up to five centuries (Cushing, 1982). For 
example, the near extinction of the great whale species has been 
reconstructed from logbooks of whaling vessels that document the 
rise and fall of catch, and especially the decline of catch per unit ef-
fort, over centuries of whaling (Bockstoce & Botkin, 1983). Similarly, 
Cushing (1982) used processor and sales records between Norway 
and Sweden to reconstruct the catch of herring and to document 
changes in both the abundance and distribution of the stock.

Caddy and Gulland (1983) used catch histories to identify four 
types of fishery patterns including (i) steady state, (ii) cyclic fisheries, 
(iii) irregular stocks and (iv) spasmodic stocks all of which were based 
on examining trends in landings. They recognized that differences in 
patterns of catch have two fundamental causes, changes in the envi-
ronment or changes in fishing pressure, and that either could cause 
a stock to behave in a way other than “steady state.”

By the mid- 1990s, the Food and Agricultural Organization of the 
United Nations (FAO) had compiled data on global landings going 
back to 1950. These landings data are summarized primarily by 
major FAO region, country of landing and taxonomic group— often 
not only described as an individual species, but also frequently de-
scribed in larger taxonomic aggregates, with “marine fish not else-
where included (nei)” representing the coarsest aggregate. We will 

use the term “stock” to refer to these categories (region, country 
and taxonomy) recognizing that, in many if not most cases, they are 
coarse aggregates of many biologically independent populations.

In 1996, Grainger and Garcia (1996) used the FAO landings data 
to estimate when fisheries catch for individual stocks peaked, which 
they interpreted as an indicator of full exploitation. They state: 
“Through a preliminary analysis of trends, globally and by oceans, 
we attempt to demonstrate that these extended time series can be 
very useful in interpreting developments in the world's fisheries and 
so help in assessing the present situation as well as for planning and 
policy- making for the future.” Part of their goal was to provide esti-
mates of global fisheries potential, but, more relevant to our purpose 
here, they used the ratio between the maximum historical catch and 
the most recent catch to indicate whether there was further poten-
tial for expansion of catch, or whether the stock was fully or even 
overexploited and provide an estimate of overall stock status for 
each FAO region (Table 6 in Grainger & Garcia, 1996).

But, Grainger and Garcia were certainly circumspect regarding 
what the catch pattern shows. They wrote: “The difference between 
peak and current landings must be interpreted with caution. Peaks 
in a smoothed production probably give an indication of the average 
long- term yield that the species assemblage in a given area may be 
able to produce sustainably in the future, with proper management. 
However, in the case of demersal stocks sensitive to regime shifts 
on a decadal scale, peak harvests resulting from transient favourable 
environmental situations bear little relation to the average long- term 
yield.” These concerns are much better understood today where we 
now understand that catches are known to decline for many reasons 
other than overfishing, perhaps the most common being shifts in 
productivity, which have been estimated to impact over 70% of fish 
stocks (Vert- pre et al., 2013). For example, changes in recruitment, 
and subsequently eventual fishable biomass, are often much better 
explained by factors other than spawning biomass (Cury et al., 2014; 
Szuwalski et al., 2015) This is closely followed by catches declining 
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due to the implementation of fisheries regulations explicitly designed 
to reduce catch, which has now been observed in many coastal and 
high seas fisheries (Hilborn et al., 2020; Pons et al., 2018).

Following similar methods to Grainger and Garcia, (Grainger & 
Garcia, 1996), Froese (Froese & Kesner- Reyes, 2002) attempted 
to assess the status of global fisheries using the ratio between 
the current catch and the maximum catch to determine stock sta-
tus. Stocks were considered collapsed if the catch has peaked and 
recent catches were less than 10% of the peak, overfished if re-
cent catches were between 10% and 50% of the peak, and fully 
exploited if recent catches were greater than 50% of the peak. 
This broad method has been used extensively by the Sea Around 
Us Project to judge the status of global and regional fisheries 
(Pauly, 2007) (Figure 1).

In 2006, Worm et al. (2006) used these catch- ratio heuristics to 
identify stocks classified on this basis as “collapsed,” calculated the 
proportion of stocks collapsed for each year and projected a trend 
forward. Their projection of the proportion of fisheries categorized 
as collapsed reached 100% by 2048 (Worm et al., 2006), a claim that 
was intensively criticized by examination of the estimates of individ-
ual stocks where abundance was known (Hilborn, 2007; Murawski 
et al., 2007). As a result of the critique, a joint group of the original 
authors and critics evaluated trends in changes in abundance, rather 
than catch, and found only a small decline in the overall abundance 
of stocks with abundance estimates from data- rich stock assessment 
models (Worm et al., 2009). This group developed a global data-
base of stock abundance called the RAM Legacy Stock Assessment 
Database (Ricard et al., 2012), which now contains estimates of the 
trends in abundance of stocks representing about 50% of global 
catch. The most recent global assessment of these data suggests 
that assessed fish stocks are, on average, increasing in abundance 
and above management targets (Hilborn et al., 2020).

Nevertheless, the remaining 50% of global fish landings reported 
to FAO come from stocks that are not formally assessed, and these 
stocks tend to come from countries where fisheries are particularly 

important to food security and employment— largely in the tropical 
world. Thus, there has been an ongoing interest in using the reported 
landings data to infer the status of the unassessed stocks.

3  |  A TA XONOMY OF MODERN 
C ATCH-  ONLY MODEL S

Early catch- only models were based on simple heuristics comparing 
current landings to historic maxima. The importance of understand-
ing the status of unassessed fisheries has led to a rapid proliferation 
of the number and types of catch- only assessment models built on 
Garcia and Grainger's (2005) initial efforts. In general, modern catch- 
only models utilize either an empirical, mechanistic or ensemble ap-
proach to estimate stock status from catch histories (Free et al., 2020). 
Empirical methods use statistical models trained on assessed stocks to 
derive associations between stock status and catch time series, often 
with auxiliary information about the biology of the exploited species 
or characteristics of the exploiting fishery. In contrast, mechanistic 
methods postulate an underlying population dynamics model, some-
times coupled within an underlying effort dynamics model, to explain 
changes in catch through a combination of changes in both stock abun-
dance and fishing effort. Finally, ensemble methods use statistical 
models to combine and leverage the strengths of individual catch- only 
models, including predictions from both empirical and mechanistic 
methods. We provide a brief overview of the methods included within 
each approach and their relative strengths and weaknesses.

3.1  |  Empirical approaches

All existing empirical catch- only assessment models estimate stock 
biomass status (e.g. B/BMSY or depletion) by training statistical mod-
els on assessed stocks with data- rich status estimates in the RAM 
Legacy Stock Assessment Database (Ricard et al., 2012). These 

F I G U R E  1  An example of estimation of stock status from catch- only data. From the Sea Around Us Project (SAUP), http://www.seaar 
oundus.org/data/#/globa l/stock - status

http://www.seaaroundus.org/data/#/global/stock-status
http://www.seaaroundus.org/data/#/global/stock-status
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methods employ a range of regression techniques and predictor 
variables including (i) panel regression models that use properties 
of the catch time series and characteristics of the stock (Costello 
et al., 2012; Thorson et al., 2012); (ii) a boosted regression tree model 
that uses properties of the catch time series (Zhou et al., 2017); and 
(iii) a boosted regression tree model that uses characteristics of the 
fishery including attributes of the catch history (Free et al., 2017). 
In general, the developers of these methods validated performance 
through cross- validation conducted during model fitting and/or 
through application to a withheld test dataset. Despite these efforts, 
challenges remain in truly validating the performance of empirical 
catch- only models. First, empirical methods are difficult to simula-
tion test— the gold standard in model validation— due to their reli-
ance on real- world relationships that cannot be reliably simulated. 
For example, surprising environmental responses, shifting manage-
ment regulations, changing costs and prices and market disruptions 
from natural disasters, civil wars or global pandemics all impact abun-
dance (Branch et al., 2011) but are challenging to simulate. Second, 
empirical methods are trained on data- rich stocks, whose dynamics 
may systematically differ from the data- poor stocks for which these 
methods are intended to assess, making their performance on data- 
poor stocks challenging to evaluate (Free et al., 2017, 2020).

3.2  |  Mechanistic approaches

Existing mechanistic catch- only models use various implementations 
of stochastic stock reduction analysis (SRA) (Kimura et al., 1984; 
Kimura & Tagart, 1982; Walters et al., 2006) to describe the distri-
bution of population trajectories and characteristics that could have 
resulted in an observed catch time series. Generally speaking, SRAs 
reconstruct historical abundance and exploitation rates by simulating 
biomass trajectories that could produce an observed catch time se-
ries given priors on the levels of depletion in the initial and final years 
of the catch time series, and often on population dynamics param-
eters such as carrying capacity, K, or intrinsic growth rate, r, in simple 
biomass dynamics models (Pella & Tomlinson, 1969; Schaefer, 1954). 
Existing mechanistic catch- only assessment models can be divided 
into those that estimate only a population dynamics model (Martell 
and Froese, 2013; Froese et al., 2017; Zhou et al., 2018; Ovando 
et al., 2021) and those that estimate a population dynamics model 
coupled with an effort dynamics model (Thorson et al., 2013; 
Vasconcellos & Cochrane, 2005). They also differ in the specific algo-
rithms and assumptions used to perform the SRA.

Mechanistic approaches are attractive because (i) they can more 
easily be validated (or refuted) through simulation testing; (ii) they can 
estimate time series of biomass and fishing mortality and MSY- based 
reference points (unlike empirical approaches which generally esti-
mate only one outcomes at a time, such as B/BMSY); and (iii) they can 
estimate demographic parameters (i.e. r and K) that can be used to 
drive operating models for projecting fisheries outcomes under alter-
native management scenarios (e.g. Costello et al. (2016) and related 
works). However, the utility of these methods can be limited in that 

they are highly sensitive to the choice of priors for key parameters 
(Bouch et al., 2021), the default priors of these methods can lead to 
inaccurate and biased estimates of stock status (Free et al., 2020; 
Ovando et al., 2021), and as we will show here, the catch time series 
does little to update status predictions beyond the priors. Despite 
these serious challenges, SRA methods, especially the CMSY family of 
methods (a shorthand for "Catch" and "Maximum Sustainable Yield," 
Froese et al., 2017; Martell & Froese, 2013), have been used to provide 
tactical advice for large commercial fisheries (e.g. Barman et al. (2020)) 
and strategic advice for regional (Froese et al., 2018; Smith et al., 2021) 
and global (Palomares et al., 2020) fisheries management.

3.3  |  Ensemble approaches

Ensemble models, which attempt to combine the strengths of in-
dividual catch- only models to generate better predictions of stock 
status, have emerged as the most accurate and least biased catch- 
only predictors of biomass stock status (Anderson et al., 2017; Free 
et al., 2020). Existing ensemble approaches have experimented with 
various formulations ranging from weighted averages to statistical 
models based on traditional regression techniques to machine learn-
ing models that are themselves ensemble models (leading to the 
term super ensembles) (Anderson et al., 2017). Ensemble approaches 
have been shown to outperform individual assessments when used 
appropriately. However, ensembles require a method for aggregat-
ing results, whether simply taking means of predictions, or weighting 
individual models based on their perceived performance for the task 
at hand. The latter can perform better but requires some measure 
of the performance of individual models, often relative to a histori-
cal empirical baseline or based on simulation (Anderson et al., 2017). 
Furthermore, existing ensemble models only predict biomass stock 
status in the final year of the catch time series (i.e they do not predict 
time series, reference points or effort status) and cannot be used to 
drive population dynamics in fisheries operating models.

4  |  E VALUATIONS OF C ATCH-  ONLY 
MODEL PERFORMANCE

The use of catch- only models in data- poor stock assessments and 
fisheries management depends on quantitative evidence demon-
strating their ability to infer and predict aspects of stock status, 
and their subsequent utility to management. By inference, we refer 
to the ability of catch- only models to estimate often unobservable 
parameters of a stock, such as MSY, based on data, in the manner 
of any statistical stock assessment model. By predictive ability, we 
refer to the ability of a model to make accurate predictions of obser-
vations outside of those on which it was trained (e.g. in the manner 
of (Costello et al., 2012)).

A thorough evaluation of catch- only model performance must 
therefore demonstrate that a method can provide accurate es-
timates and predictions of stock status and useful management 
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advice under a range of potential conditions (e.g. species type, 
fisheries management context, and length and uncertainty of the 
catch time series). These evaluations can be achieved through 
testing on assessed fisheries with data- rich estimates of stock 
status or testing on simulated fisheries with known stock status. 
Simulation testing can offer true “known” values to compare model 
predictions against, greater sample sizes, the ability to compare 
performance across more conditions and an opportunity to eval-
uate the consequences of using advice from catch- only models in 
management decisions. However, the validity of simulation testing 
also depends on the degree to which the dynamics of the simu-
lation model match the “true” dynamics of the systems in which 
catch- only models are intended to be applied. Empirical validation 
can allow comparison to a wider range of potentially more realistic 
models, but have the shortcoming of comparison against model 
estimates, not true known values.

Rigorous performance evaluations should also reflect the con-
ditions under which a method is likely to be applied. For example, if 
the performance of a catch- only model depends on the priors used 
to parameterize the method, then testing should reflect an expert's 
ability to accurately set priors for a new fishery under the conditions 
they are likely to face in the real world. It has been rare for either 
internal evaluations (testing conducted by method developers) or 
external evaluations (testing conducted by peers) to include all of 
these idealized components (i.e. simulation testing, empirical testing, 
robust cross- validation across a range of applicable scenarios and 
management strategy evaluation). Thus, we synthesize the perfor-
mance of catch- only models across a combination of several stud-
ies, acknowledging that a full review of the testing methods used to 
evaluate every catch- only model is beyond the scope of this paper.

We begin with an examination of the methods used to internally 
validate CMSY (Froese et al., 2017), arguably the most widely used 
model for assessing the status of fisheries using only catch data. 
When testing the performance of CMSY on data- rich stocks, the 
developers manually updated the default priors for 54 (34%) of the 
test stocks to ensure that they contained the true parameter values. 
They argued that this represents a scenario in which expert opinion 
has “not made gross errors in setting broad prior biomass ranges.” 
However, this likely represents an optimistic view of the ability of ex-
perts to set priors in a new fishery and does not reflect the common 
use of these models. For example, default priors, not expert opinion, 
were used to assess 1,320 global stocks in Palomares et al. (2020), 
with the authors justifying the use of CMSY based on its performance 
under the idealized conditions it was tested on. The developers also 
assessed the performance of CMSY on a set of 48 simulated stocks. 
However, the operating model used to generate the simulated test 
dataset was identical in structure to the underlying SRA model. A 
more rigorous testing approach would test the simplified population 
dynamics algorithms underlying CMSY and other catch- only models 
against more realistic age- structured models, which now have wide-
spread software support (e.g. FLR; (Kell et al., 2007)).

As another example, Zhou et al. (2018) tested OCOM, an-
other SRA approach, on assessed stocks that contributed to the 

parameterization of their prior on final year depletion. Best prac-
tices in predictive modelling would have the model tested on a 
set of data fundamentally isolated from its development (Kuhn & 
Johnson, 2013). The testing regime in Zhou et al. (2018) also em-
ployed a common “leave- one- out” strategy, in which the model is 
fit to all but one stock, and then used to predict the status of the 
omitted stock, with this process repeated across each of the stocks. 
This can be an appropriate test if the goal of a model is, for example, 
to provide an assessment for one unassessed stock in an otherwise 
heavily assessed region. However, to the extent that stock status 
exhibits correlation across stocks, whether due to common manage-
ment regimes, life histories or environmental shocks, it is not clear 
that a model trained in one region will be able to predict as well in a 
new region with different dynamics.

External evaluations, which often employ a more thorough set 
of testing procedures than those employed in the original publica-
tion describing a given catch- only model, generally show catch- only 
models to be much less accurate and more biased than reported 
by internal evaluations (Anderson et al., 2017; Bouch et al., 2021; 
Free et al., 2020; Ovando et al., 2021; Pons et al., 2020). Rosenberg 
et al. (2014) measured the accuracy and bias of four catch- only mod-
els (Catch- MSY, COMSIR, SSCOM and mPRM) across 5,760 stocks 
simulated with an age- structured operating model (i.e. different 
from the production models commonly used in the SRA methods) 
and found them to be imprecise and biased predictors of B/BMSY. 
Anderson et al. (2017) found similar results when testing the same 
methods on data- rich stocks in the RAM Legacy Database. Weir 
(2017) showed that the same four methods were poor classifiers 
of IUCN threat status (i.e. vulnerable, endangered or critically en-
dangered) when applied to the Rosenberg simulated stocks. Free 
et al. (2020) evaluated seven additional methods on both RAM 
stocks and the Rosenberg simulated stocks and found all eleven to 
be imprecise and biased predictors of B/BMSY and categorical status 
(i.e. under exploited, fully exploited or overfished). Pons et al. (2020) 
tested the performance of both Catch- MSY (Martell and Froese, 
2012) and CMSY (Froese et al., 2017) on a new set of 2,700 sim-
ulated stocks and still found both to be imprecise and biased, es-
pecially when the stocks were lightly exploited. Bouch et al. (2021) 
applied CMSY (Froese et al., 2017) to 17 ICES stocks and found it 
to overestimate relative fishing mortality and underestimate relative 
stock status, especially for stocks showing signs of recent recovery. 
Sharma et al. (2021) applied CMSY and sraplus (Ovando et al., 2021) 
to 48 ICES stocks and found both to generate biased predictions of 
stock status when using default priors. Ovando et al. (2021) similarly 
found that catch- only models frequently produced imprecise and bi-
ased estimates of stock status, misclassifying the overall state of a 
fishery 57% of the time.

Developing a robust set of tests for a predictive model, partic-
ularly for a problem as complex as predicting the stock status of a 
fishery, is a difficult task. It is understandable that different groups 
will develop different testing regimes based on their anticipated 
use of the model, and the suite of models and data at their disposal. 
However, the potentially optimistic testing regimes used in the initial 
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justifications for many existing catch- only models may explain the 
sharp drop in performance exhibited by these models when con-
fronting external evaluations.

Estimating stock status is only the first step in the fisheries man-
agement process and fully judging the utility of catch- only models 
in data- poor fisheries management requires tracking the impact of 
their status determinations on harvest control rules, biomass status 
and fisheries outcomes such as catch, profits and employment. A 
well- designed harvest control rule can help overcome known biases 
in an assessment method. Such testing can be achieved through 
management strategy evaluation (MSE), which simulates the re-
source, fishing fleet and management decisions in a closed- loop sys-
tem (Punt et al., 2016) and has been underutilized in either internal 
or external evaluations of contemporary catch- only models (but see 
(Harford & Carruthers, 2017)). Walsh et al. (2018) used a MSE model 
to evaluate whether an ensemble model, the most accurate catch- 
only approach to estimating stock status (Anderson et al., 2017; 
Free et al., 2020), can reliably inform fisheries harvest control rules. 
They found that the large inaccuracies in even this most reliable of 
catch- only models require cautious harvest control rules to prevent 
overfishing and improve B/BMSY status. While successful, cautious 
harvest policies result in considerable foregone sustainable yields 
(Walsh et al., 2018). Such trade- offs are likely larger with even less 
accurate status determinations.

5  |  WHAT C AN C ATCHES TELL US?

While the extensions to the basic catch heuristics first employed 
by Froese, Garcia and Grainger (Froese & Kesner- Reyes, 2002; 
Garcia & Grainger, 2005) described above may— under the right 
circumstances— provide performance gains, the general consensus 
of numerous external evaluations is that catch- only models provide 
imprecise and biased estimates of stock status when applied to new 
fisheries. In this section, we consider why this might be, by breaking 
down the ability of catch- only models to infer information on stock 
status and the ability of catch- only models to predict stock status, 
two related but critically different tasks.

Drawing from Donoho (2017), this distinction relates to the 
“two cultures” outlined by Breiman (2001), prediction and inference. 
Inference is concerned with estimating the parameters of a hypothe-
sized data- generating process. This is the realm where most fisheries, 
and indeed statistical, models operate. A classic example of an infer-
ential task would be to estimate the growth rate and carrying capac-
ity, and by extension stock status, of a fishery based on an assumption 
of logistic growth and given an index of abundance and a time series 
of catches. Inferential models are often judged by the strength of 
the evidence in the data for a particular model structure, for exam-
ple the posterior distribution of a parameter of interest (Tredennick 
et al., 2021). Critically, inference allows us to estimate the value of 
unobserved parameters (e.g. stock status relative to reference points) 
based on assumptions of a data- generating process linked to observed 
data (e.g. time series of catch and an abundance index).

Purely predictive models can be agnostic as to the underlying 
data- generating model. They are concerned only with the accuracy 
of predictions made by the model and not with the strength of evi-
dence for particular parameters of the model. While more interpre-
table models such as linear regressions can be used for prediction, 
increasingly “black- box” models such as random forests, boosted 
regression trees and.other machine learning methods are employed 
for predictive modelling. In these cases, the model seeks to leverage 
correlations between an outcome of interest and candidate variables 
to make accurate predictions. Predictive models of this type cannot 
estimate the value of unobserved parameters on their own; they 
require training on a dataset with “known” values. In the fisheries 
context, a predictive model might seek to predict stock status as 
a function of a catch history- based off relationships observed be-
tween catch histories and stock status values for a subset of fisher-
ies with “known” stock status.

5.1  |  Inference from Catch Histories

The broad intuition behind catch- only models is relatively simple: 
Collapsed fisheries produce zero or little catch, and fisheries collapse 
after overexploitation. Therefore, a sharp rise in catches followed by 
a sudden and sustained crash in catches likely tells us that the stock 
was overexploited and collapsed. While this intuition seems sound 
and would certainly apply to some overexploited open- access fish-
eries, what can we actually infer from simply observing the catch 
history of a stock? To answer this, consider a simple and common 
equation for catch in a fishery:

Where t is time, C is catch, q is the catchability coefficient for 
fishing effort E, and B is fishable biomass. If all we observe is C, we 
cannot clearly estimate B using conventional statistical without mak-
ing numerous other assumptions: that is we have one equation and 
three unknowns (though see discussions of Takens’ theorem, as in 
(Thorson et al., 2013), for considerations of ways in which informa-
tion on biomass may be embedded in catches). Given only a catch 
history, to equate changes in catch with changes in biomass, we must 
assume that both catchability q and effort E are constant over the 
same time period. While this may occur in some fisheries, it is an un-
likely scenario. This is why formal fisheries assessments are instead 
based on catch- per- unit- effort data and focus largely on separating 
catchability from biomass (Hilborn & Walters, 1992).

It is clear then, that in the absence of other data, through most 
approaches, we cannot infer anything about trends in biomass from 
catch alone without invoking strong assumptions about parameters 
such as catchability and effort over time. What though about the 
shape of the catch history? Surely, conditional on a model, certain 
catch histories imply different fishery states? This is the core idea 
on which most catch- only models are based. To test this idea, we 
ran a series of stock reduction analysis (SRA) models to evaluate the 

(1)Ct = qtEtBt
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impacts of the shape of the catch history on the stock status esti-
mated by each algorithm.

The stock reduction algorithm used is sraplus, described in 
Ovando et al. (2021). The model is supplied with a prior on the growth 
rate r (log- normal with mean = 0.35 and CV = 20%) and the carry-
ing capacity K (log- normal mean = 5 times max catch, CV = 100%, 
capturing a range similar to the version of CMSY used in (Anderson 
et al., 2017) ) for a Pella- Tomlinson (Pella & Tomlinson, 1969) surplus 
production model, as well as priors on B relative to K in the initial 
(log- normal mean = 1, CV = 25%) and final years of the catch his-
tory (log- normal mean = 0.2, CV = 25%). We chose these relatively 
informative priors to reflect ranges used by default for analogous 
parameters in many common catch- only models (Table S1). We then 
generated a series of catch histories that have the same average life-
time catch but vary starkly in their dynamics: a constant increase, 
a constant decrease, a peak then a decline, a decline then a recov-
ery, a random walk and random values (Figure 2a). We then used 
sraplus to perform a standard stochastic stock reduction analysis on 
these artificial catch histories, using the same priors on growth rate, 
carrying capacity, and initial and final B/K for each simulated catch 
history. In each iteration of the stock reduction analysis, the algo-
rithm randomly selects a value for the growth rate, carrying capacity 
and initial and final B/K from the supplied prior distributions. The 
Pella- Tomlinson model is then run with the selected prior values on 
growth rate and carrying capacity, initialized at the sampled initial 
B/K, using the artificial catch history in question. Any combination of 

prior draws that results in biomass values less than or equal to zero 
is immediately rejected. The remaining “viable” draws from the stock 
reduction analysis are then sampled in proportion to the likelihood 
of the projected final B/K relative to the prior distribution of the 
final B/K. These general methods match the steps laid out in Walters 
et al. (2006) barring the difference in the operating model used and 
reflect the general steps in CMSY (omitting a prior on intermediate 
B/K and strict bounds on B/K).

We then examined the distribution of B/K predicted by the 
catch- only model relative to the explicit priors supplied on stock 
status. Note that the supplied B/K prior in sraplus is log- normally 
distributed, so the model has support for a continuous range of B/K 
values greater than zero. This means that, in theory, the post- model- 
pre- data B/K values generated by sraplus are allowed to vary greatly 
from their inputs. Any stock reduction analysis done in this manner 
will produce a positive bias in final B/K estimates, as there are al-
ways more ways for a stock to be less depleted than more depleted. 
Consider a prior on final B/K with nearly all its probability density 
concentrated near zero, a stock reduction analysis model will assign 
a low probability to an individual draw from the stock reduction al-
gorithm that produced a final B/K near one, at the tail end of the 
prior distribution. However, suppose that our prior on carrying ca-
pacity was much greater than the average catch volume, nearly all 
draws from the stock reduction algorithm will have a final B/K near 
one, since catches will be much lower than carrying capacity. The 
final distribution of B/K produced by sraplus will then be pulled close 

F I G U R E  2  Simulated case studies demonstrating informational content of catch histories alone. Key parameters are growth rate and 
carrying capacity (K). The prior for the growth rate is log- normally distributed with a mean obtained from FishLife and a coefficient of 
variation (CV) of 20%. The prior for K is log- normally distributed with a mean equal to five times the maximum catch and CV of 100%. 
The prior on stock status (B/K) in the final year is log- normally distributed with mean of 0.2 and CV of 25%, mean of 1 and CV of 20%. (a) 
Shows simulated catch histories (solid line) and the resulting estimates of B/K (biomass relative to carrying capacity, dashed line) given each 
simulated catch history. (b) Shows the prior (dark grey) and posterior (light grey) distributions of B/K in the final year. Priors on initial and 
final B/K and life history are identical across all simulations
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to one, since even though the prior assigns a low probability to any 
individual draw with B/K equal to approximately one, the model has 
many more opportunities to select these high values.

By default, sraplus employs a prior- predictive tuning procedure 
to correct this behaviour (see Ovando et al. (2021)). But, we have 
turned that feature off for this analysis to isolate the impact of the 
catch history shape itself on estimates of stock status from catch- 
only models. A common Bayesian model diagnostic is to compare the 
prior and posterior distributions, to see how much any priors in the 
model were updated by the data the model was confronted with. 
The premise behind catch- only models is that the catch history on its 
own can tell us something new about stock status that was not en-
coded in the priors themselves. However, comparing the prior and 
posterior of the most recent B/K estimate for these simulated catch 
histories, we see that the prior and posterior are essentially identical 
despite the priors being confronted with starkly different catch his-
tory shapes. Conditional on our life history and stock status priors, 
and the model choice,1 in most cases, the shape of the catch history 
alone does not contain meaningful information about stock status in 
the final year of the fishery that was not already encoded in our pri-
ors, although there may be edge cases where this will not be true. 
For example, if we know a given fish species exists, but catches for 
that species have been zero in every time step, baring massive pro-
cess error, any stock reduction will not be able to find many parame-
ters values that results in final B/K values much less than one. But for 
more typical catch history forms, like those used in our example, 
conditional on the priors, the shape of the catch history itself does 
not meaningfully update our prior beliefs about final stock status 
(Figure 2b).

This result may appear somewhat confusing to readers who have 
previously encountered catch- only models that produced posterior 
distributions of final B/K values that appeared very different than 
their supplied priors. In our above examples, we use sufficiently dif-
fuse priors on key life history parameters (growth rate and carrying 
capacity) such that they do not constrain the model. However, this is 
not always the case in catch- only models. Consider a fishery with an 
average annual lifetime catch of 10,000 MT (metric tons), suppose 
then that we supply a prior on carrying capacity K that is uniform [0, 
11,000], and a prior on final B/K that is uniform [0,1]. Clearly, given 
average annual catches of 10,000 MT and a prior on K that at most 
barely exceeds that level, the only possible solution for a standard 
model is that the stock is at very low levels. Therefore, despite hav-
ing a very diffuse explicit prior on final B/K, the posterior will show 
a very tight distribution at a very low stock status. See Supporting 
Information for additional analyses demonstrating these phenom-
ena across a range of more diffuse and more informative priors for 
both high and low stock status. These scenarios collectively demon-
strate that stock status in the most recent time step is positively cor-
related with the diffusion of the priors in stock reduction algorithms 
of this form.

The problem here is that when we provide a model with priors 
on, in the case of a simple Schaefer model (Schaefer, 1954), growth 
rate r, carrying capacity K, and initial depletion, conditional on the 
model structure and the catch history, we have provided an im-
plicit prior on stock status. When we then place a second explicit 
prior on final stock status, we create a problem known as Borel's 
Paradox (Poole & Raftery, 2000). Borel's Paradox suggests that 
when we supply an implicit and explicit prior on final stocks status, 
the posterior will reflect the joint combinations of all these layered 
priors, creating the appearance of learning. This means that cer-
tainly, if we provide sufficiently informative and accurate priors, a 
catch- only model may provide good results. But, the performance 
is entirely dependent on the priors and the validity of the priors 
and the chosen model, not on information gleaned from the shape 
of the catch history alone. This means that the choice of priors on 
life history has a substantial influence on the outcomes of catch- 
only models.

In summary then, catch histories alone do not allow us to infer 
stock status. The “information” about stock status comes almost ex-
clusively from specific assumptions such as relatively constant ef-
fort, or priors on r and K and final stock status. Given specific priors, 
different catch histories can imply different states of a fishery, but 
this updating is dependent on the supplied r and K priors, not intrin-
sic information derived from the catch history that is preserved as 
you modify the r and K priors.

5.2  |  Prediction from Catch Histories

This simple simulation exercise illustrates that the ability of catch- 
only models to infer recent stock status based on the shape of a 
catch history is limited. However, on its own, this does not neces-
sarily mean that, as a measure of stock status, catch- only models 
would perform badly as a predictive model in the real world, sup-
pose that every stock in the world followed Schaefer dynamics 
(Schaefer, 1954) and had the same r, K and initial depletion. If we 
knew the value of these parameters, or could provide reasonable 
priors on their distribution, applying that knowledge to the catch his-
tory of each stock through a catch- only model would provide the 
correct stock status for every fishery. The question then is how ro-
bust any selected priors are, which, as we show above is where the 
actual information about stock status in catch- only models is coming 
from.

Many catch- only models have built in models or heuristics for 
generating priors. For example, CMSY (Froese et al., 2017) has a 
series of internal heuristics that create priors on initial, intermedi-
ate and final B/K based on the characteristics of the catch history. 
Costello et al. (2012) also produced estimates of stock status based 
on empirically derived relationships between catch histories and ob-
served stock status. Both of these methods share a common trait 
of having observed, either informally or statistically, relationships 
between catch histories and stock status. The question then is to 
what extent do such prior- generating mechanisms produce valid 

 1Alternative model choices, such as assuming that fishing effort must stay constant or is 
strongly autocorrelated, could change this.
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TA B L E  1  Status of fish stocks (measured as B/BMSY) from different regions from known assessments or expert knowledge, and from 
three published catch- only models

Region B/BMSY

Catch- only assessment method

Panel regression (Costello 
et al., 2012)

Ensemble model (Rosenberg 
et al., 2018)

Catch- MSY (Froese 
et al., 2012)

NE Atlantic 1.30b 0.91 0.97 0.24

NE Pacific 1.78b 1.18 1.02 0.31

WC Pacific (China and Indonesia) Lowa 0.89 1.06 1.06

Eastern Indian Lowa 0.94 1.04 1.04

Mediterranean and Black Sea 0.56b 0.88 0.96 0.96

aFrom (Melnychuk et al., 2017). bfrom RAM Legacy Stock Assessment Database.

F I G U R E  3  Default priors for (a) final B/K, (b) initial B/K, (c) intrinsic growth rate, r, and (d) carrying capacity, K, from Catch- MSY (Martell 
& Froese, 2013) and CMSY (Froese et al., 2017) compared with values derived for stocks with data- rich stock assessments. In all panels, the 
coloured shading indicates default priors and the black points and/or boxplots indicate values derived from data- rich stocks. In (a) and (b), 
black and grey points indicate stocks with B/K estimates occurring inside and outside the default priors used in CMSY respectively. In these 
panels, the dashed lines indicate pre- exploitation biomass (B/K = 1), which can be exceeded due to age- structured population dynamics and 
the dotted lines indicate BMSY (B/K = 0.5). Catch- MSY sets default initial B/K priors based on the catch ratio in the final year of the catch 
time series and is not shown. CMSY sets default carrying capacity priors based on resilience, initial B/K and maximum catch and is not shown
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predictions when applied to new fisheries? To that end, we consider 
here whether catch- only models show evidence of being effective 
predictors of stock status.

When we compare published predictions from catch- only models 
for regions of the world where we either have good information on 
stock status or general recognition of concern about stock status— 
the catch- only models detect only minor differences between 
regions that have very different statuses (Table 1). A very high pro-
portion of stocks are assessed in the NE Pacific and NE Atlantic and 
are well above target reference points while numerous assessments 
from the Mediterranean show that stocks there are in poor shape. 
For the Western and Central Pacific (mostly China and Indonesia) 
and the Eastern Indian Ocean, we have expert opinion that stock 
status is poor (Melnychuk et al., 2017). All three catch- only models 
considered here struggle to reproduce this understanding of either 
the absolute or relative differences in stock status between these 
regions (Table 1).

Diving into these discrepancies, we examined the performance 
of the default priors used by Catch- MSY (Martell & Froese, 2013) 
and CMSY (Froese et al., 2017), arguably the two most widely used 
catch- only stock assessment methods, when applied to stocks 
with data- rich assessments in the RAM Legacy Stock Assessment 
Database (Ricard et al., 2012). We found that the default priors used 
by Catch- MSY and CMSY for final B/K, which are set based on the 
ratio of final to maximum catch (Table S1), correctly captured only 
52% and 33% of the data- rich estimates respectively (Figure 3a). 
Furthermore, the default priors were highly biased for stocks with 
low catch ratios (final/maximum catch <0.5), which represent over 
three- quarters of the evaluated RAM stocks. The default priors as-
sume that all of these stocks are below BMSY when 38% of these 
stocks are actually above BMSY (Figure 3a). The default priors for 
initial B/K, which are set based on the first year in the catch time 
series, are also poor predictors of initial B/K. These priors correctly 
captured only 13% of the data- rich estimates (Figure 3b) and were 
especially biased for catch time series beginning after 1960. The pri-
ors assume that stocks with catch time series beginning after 1960 
begin over to fully exploited (B/K = 0.2– 0.6; Table S2) when, in fact, 
82% of these stocks were lightly exploited in the first year of the 
catch time series (B/K > 0.6; Figure 3b).

The default priors for intrinsic growth rate r, which are based 
on resilience (Table S3), are more reasonably distributed than the 
B/K priors but include high values not relevant to most stocks. This 
is problematic given that the CMSY algorithm favours high growth 
rates and low carrying capacities in the “tip of the triangle” of via-
ble r- K pairs (Froese et al., 2017). This drives the CMSY algorithm to 
favour high, and unlikely, growth rates, which could lead to biased 
predictions of stock productivity and target fishing mortality rates 
(FMSY). We surmize that this could lead to high overfishing if default 
values of CMSY are used to assess stocks and to guide tactical man-
agement. Finally, the default priors used by Catch- MSY for carrying 
capacity are reasonable but are very broad (Figure 3d). There is little 
empirical support (Figure 3d) for the default priors for carrying ca-
pacity used by CMSY, which are based on a complex combination of 

resilience, initial B/K and maximum catch (Table S4). Furthermore, 
the “tip of the triangle” assumption employed by CMSY favours low 
carrying capacities, which contributes to CMSY’s pessimistic bias to-
ward low stock biomass status (the majority of this bias likely comes 
from the pessimistic final B/K priors).

To the extent that one could a priori reliably predict life history 
parameters r and K for a fishery, a catch- only model would produce 
reliable predictions to the degree that the population can be well 
represented by the selected population dynamics model. However, 
the default prior- generating algorithms for life history parameters 
utilized in one of the most commonly employed catch- only models, 
CMSY, have clear biases that will in turn bias estimates of stock sta-
tus (Figure 3). An alternative strategy then is to identify empirical 
predictive relationships between catch history attributes and stock 
status. This is the underlying philosophy of efforts such as Costello 
et al. (2012), Thorson et al. (2012) and Zhou et al. (2017). We revisit 
these approaches here to illustrate both the potential and limitations 
of predictive catch- only models.

We trained a machine- learning model (a boosted regression tree) 
to predict stock status as a function of catch history. The model 
treats values of B/BMSY reported in the RLSADB as “known” and 
then fits a model using candidate characteristics of the catch history, 
along with life history parameters, to predict the values reported in 
the RLSADB. Performance of predictive models is assessed based on 
the accuracy of predictions made by the model on observations held 
out from the training process. The testing regime must then be care-
fully designed to reflect the intended use of the model in question. 
In this case, the goal was to be able to predict the status of fisher-
ies with unknown stock status, often in completely new geographic 
regions, based on observed relationships in fisheries with “known” 
stock status. We filtered the RLSADB down to 293 stocks with val-
ues of B/BMSY and at least 25 years of catch data. We then included 
only the values after the first 20 years of the fishery, to prevent the 
model from spending too much effort trying to estimate stock status 
in the early years of the fishery (assuming, in this case, that the pur-
pose of the model was to provide estimates of current stock status).

In order to assess model performance when faced with stocks in 
an entirely new region, we then split these stocks into a training and 
testing datasets, where the training dataset contained all stocks that 
fit our criteria except those from New Zealand, Australia and South 
Africa (N = 293; 88% of stocks), and the testing dataset contained 
all stocks that fit our criteria from New Zealand, Australia and South 
Africa (N = 40; 12% of stocks). The data were split using these three 
countries to retain a testing dataset that had a reasonable sample 
size and was geographically isolated from the training dataset. All 
model tuning (Figure S2) and fitting were performed exclusively on 
the training dataset.

The candidate covariates for the model included various attri-
butes of the catch history and life history traits of the species and 
are similar to the covariates used in other empirical catch- only mod-
els (Anderson et al., 2017; Costello et al., 2012; Thorson et al., 2012; 
Zhou et al., 2017). Life history traits include steepness, asymptotic 
size and the ratio of natural mortality to growth rate and were drawn 
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from FishLife (Thorson, 2020). Attributes of the catch history in-
cluded factors such as catch divided by the mean or maximum catch 
in each time step. We also used an unsupervised spectral clustering 
algorithm to classify each of the stocks in the RLSADB into one of 
four catch history shapes, with the exact shape of the catch histories 
clusters assigned to each cluster determined by the spectral cluster-
ing algorithm (Figure S1). This catch history classification was also 
included as a predictor of stock status in the model. See Table S5 
for a complete list of candidate variables. These candidate predictor 
variables are intended to reflect the kinds of catch history traits and 
life history variables commonly included when constructing priors 
for catch- only models. In theory, if a strong predictive relationship 
between these types of covariates and B/BMSY exists, a flexible 
model such as a boosted regression tree should find it.

Boosted regression trees have a number of tuning parameters 
that must be set outside of the model fitting process itself. We 
performed a grouped v- fold cross- validation routine on the train-
ing dataset to tune these parameters, splitting the training dataset 
into five analysis and assessment splits, each of which assigns non- 
overlapping sets of stocks to the analysis and assessment splits. We 
then fit a grid of candidate tuning parameters to the analysis splits 
and used them to predict the assessment splits. The set of tuning 
parameters with the lowest root mean squared error (RMSE) on the 
assessment splits was selected for use for model fitting. We then 
fit the model to the complete training set using the selected tuning 
parameters and then used the fitted model to predict the B/BMSY 
values in the testing set (containing only stocks from New Zealand, 
Australia and South Africa). As a secondary test, we also conducted 
a leave- one- out cross- validation test on only the training data (hold-
ing the tuning parameters at their selected values), sequentially 

removing one stock from the training set, fitting the model on the 
remaining training stocks, predicting the omitted stock, then moving 
on to the next stock.

Catch- only models depend on the assumption that there is a 
connection between stock status and catch histories. Active man-
agement of catches clearly distorts this relationship. To account 
for this, we ran a secondary test, repeating the above process, but 
restricting the model to data before 1990. As strict fisheries man-
agement was rarer in these years, this provides a test of whether 
a stronger predictive relationship exists between catch and stock 
status in years with fewer catch restrictions.

The R2 of the model on the training dataset was 0.7, with an 
RMSE of 0.5. However, unlike random forests, boosted regression 
trees do not automatically produce out- of- bag predictions for the 
training data. Therefore, this relatively good fit is not a true measure 
of the predictive power of the model as the stocks being predicted 
were also included in some of the model fits. The leave- one- out 
analysis provides an honest assessment of the predictive power of 
the model on the stocks in the training dataset, producing an R2 of 
0.38 and an RMSE of 0.72. Fits for the testing dataset were slightly 
poorer (R2 of 0.28 and an RMSE of 0.7), but not by much, suggesting 
that our tuning process did a reasonable job of selecting parameter 
values that prevented overfitting (Figure 4). Results for fits to the 
pre- 1990 data were similar, see Figure S3.

In our analysis, a model using only life history and characteris-
tics of the catch history, in the manner of Costello et al. (2012), was 
able to explain roughly 30% of the variance, a value higher than re-
ported in Costello et al., (reported fits in that paper are on log- scale, 
and so will be worse than the reported values when converted to 
natural scale as evaluated here), and in line with the values in Zhou 

F I G U R E  4  RAM Legacy Stock Assessment Database (RLSADB) reported (x- axis) and machine learning predicted (y- axis) B/BMSY values. 
Colour represents density of individual points across these coordinates. The training dataset (N = 293) includes RLSADB stocks from 
everywhere except Australia, New Zealand and South Africa. The testing dataset includes only stocks from Australia, New Zealand and 
South Africa (N = 40). Leave- one- out analysis are the out- of- bag predicted values for the stocks in the training dataset. Test indicates R2 and 
root mean squared error (RMSE) for each individual panel. The black dashed line is the 1:1 fit, and the red solid line is a linear fit between the 
reported and predicted values
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et al. (2017). In both the leave- one- out and testing fits, the model 
underestimates stock status for stocks with B/BMSY greater than 
one and overestimates it for stocks with B/BMSY less than one. The 
RMSE of this model is high enough to frequently assign a stock to 
the wrong general status bin (e.g. classify as under fished when it is 
overfished and vice versa).

Clearly, further work could be done to refine performance. 
However, in our experience, these refinements (e.g. alternative 
model types and feature engineering) can produce some improve-
ments, but rarely produce transformative increases in model per-
formance. We suggest then that the levels of predictive power seen 
here and in Zhou et al. (2017) are likely close to the upper level of 
performance for empirical models tasked with predicting B/BMSY 
based on estimates from the RLSADB. This predictive performance 
is not without use, showing some ability to differentiate between 
stocks that are more likely to be over- versus- under fished, but is 
clearly not capable of providing precise or accurate predictions for 
individual stocks.

While it is certainly possible that someone could come up with 
a better model parameterization, given that this result fits firmly in 
line with the types of performances seen of other catch- only models 
when tested in Free et al. (2020), we feel that substantial increases in 
out- of- sample predictive power of empirical catch- based models are 
simply not there to be found. This analysis demonstrates that, while 
in theory predictive empirical relationships could be found between 
catch and life history and stock status, we see no evidence that im-
proved performance beyond the levels observed here is likely to 
exist given currently available data. It should also be noted that what 
evidence is present will degrade as soon as management measures 
have been put in place in response to a catch- only model, limiting 
the ability of predictive catch- only models to serve as a basis for 
continued assessment and responsive management.

6  |  CONCLUSIONS

Catch histories are the most comprehensive source of global data 
on fisheries production, spanning both industrial and artisanal fish-
eries across a wide range of economic and ecological conditions 
(FAO, 2020), although it is widely recognized that small- scale fish-
eries are underrepresented in the data reported to FAO (Kelleher 
et al., 2012), and the quality and taxonomic resolution of the data 
is highly variable. These data are an important tool for helping us 
understand the role of global fisheries in human wellbeing and 
anthropogenic impacts. Catches are a function of the size of fish 
populations, and so contain information on the minimum size of 
stocks. However, based on first principles and numerous efforts at 
replication, it is clear that catch- only models are not a consistently 
reliable means of either inferring or predicting the state of fished 
populations.

The basic catch equation (Equation 1) shows that one cannot solve 
for biomass without making strong assumptions about factors such 
as catchability and effort. There certainly are fisheries in which both 

effort and catchability have been sufficiently constant or predict-
able as to facilitate inference of stock status based on catches alone. 
However, in most fisheries, catches change for a wide number of rea-
sons, including environmental forcing, economic incentives, techno-
logical advances and fisheries regulations (Hilborn & Branch, 2013). 
Each of these factors can break the relationship between stock status 
and catch. Our results show that the shape of the catch history itself 
is uninformative on the state of a fishery, conditional on life history 
priors and the mean volume of the catch (Figure 2).

Efforts at predicting stock status based on catch histories reveal 
a consistent pattern of some but limited predictive power, often with 
out- of- sample R2 less than 0.35, and substantial potential for bias 
(Anderson et al., 2017; Bouch et al., 2021; Free et al., 2020; Ovando 
et al., 2021; Pons et al., 2020). These values may be higher for cases 
where the fishery to be estimated closely resembles those included 
in the training dataset, but predictions are likely to be particularly 
poor for fisheries that look little like the highly managed stocks on 
which predictive models can be trained. This is certainly the case for 
the other half of the world's fisheries where catch- only models are 
most likely to be needed or applied.

This is not to say that catch- only models are without value. The 
original formulation of CMSY (Martell & Froese, 2013) was designed 
not to estimate stock status but to estimate MSY itself. There is 
ample evidence and logic supporting the idea that for fisheries with 
catches that have ever come close to or surpassed MSY, the catch 
history can provide a plausible guide to the magnitude of this im-
portant reference point. In terms of stock status, to the extent that 
there is good reason to think that a particular stock can be repre-
sented with a surplus production model, if users are able to set rea-
sonably accurate priors on population parameters such as r and K, 
then filtering these prior distributions through the lens of the popu-
lation model combined with the catch history will indeed provide an 
accurate estimate of stock status. However, the focus then must be 
on understanding the critical importance of setting these life history 
priors accurately, and not on assuming that somehow the combina-
tion of the priors along with the shape of the catch history can pro-
vide information not encoded in the priors themselves.

Catch- only models are also likely to work better in some systems 
than others. However, evaluating catch- only models does present a 
bit of a paradox. The only fisheries for which we are likely to have 
robust data- rich empirical estimates of stock status will tend to be 
highly managed fisheries, exactly the cases where we would expect 
the weakest relationships between catch and biomass due to active 
management and strong market forcing. This means that empirical 
evaluation of catch- only models may underestimate their potential 
performance in less managed fisheries with perhaps a clearer link 
between catch and biomass. However, our analysis evaluating the 
predictive power of an empirical catch- only model using only pre- 
1990 data, when fisheries management was less intense in assessed 
fisheries, suggests that this gap may be small (Figure S3). The only al-
ternative to empirical testing of catch- only models is simulation test-
ing. While simulation testing can be designed to reflect a wider range 
of fishery dynamics than those represented in databases such as the 
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RLSADB, simulated fishery dynamics can also be overly simplistic, 
and simulation tests often conform more to the assumed dynamics 
of catch- only models than reality will for the sake of computational 
efficiency (e.g. use of surplus production dynamics for both the op-
erating and estimation model).

The critical need then is more robust estimates of the expected 
performance of catch- only models under a range of plausible cir-
cumstances, based both on confrontation with empirical obser-
vations and evaluation through simulation testing. Users can then 
make informed judgements as to whether the expected perfor-
mance of catch- only models for their particular application are likely 
to be sufficient for their needs, or whether the expected imprecision 
and bias are simply too great for model outputs to be useful as an 
index of stock status. Where catch- only models are still selected for 
use as a source of stock status, it is critical that users are empow-
ered with an understanding that estimates of stock status based on 
SRA- style catch- only models are purely a function of the accuracy 
of priors on stock status combined with the accuracy of required life 
history priors: There is no way for the shape of a catch history to 
“overcome” poor priors and infer the true state of a stock except by 
chance alone. For more empirical predictive models, the best avail-
able evidence suggests that while there is some predictive power in 
catch histories, it is limited and highly sensitive to the resemblance 
of the fisheries it is applied to compare the fisheries the models were 
trained on.

Our concern is that catch- only models can promise an off- the- shelf 
method to assess fish stocks that can and has been used without clear 
communication or understanding of their limitations. Despite increas-
ingly being used as a tool informing direct management decisions, it is 
clear from both empirical and simulation testing that off- the- shelf use 
of catch- only models is not a reliable means of estimating stock status, 
and that a key to better global fisheries assessment and management 
is not wider application of catch- only models or model refinement, but 
rather expanded collection and curation of diverse data sources that 
contain meaningful information on the state of fisheries.

ACKNOWLEDG EMENTS
We thank two anonymous reviewers for their helpful revisions and 
comments.

CONFLIC T OF INTERE S T
RH receives research funding from many groups that have interests 
in fisheries outcomes including environmental NGOs, foundations, 
governments and fishing industry groups.

AUTHOR CONTRIBUTION
C.F. and D.O. conducted all analyses. All authors contributed to the 
conceptualization and writing of the manuscript.

DATA AVAIL ABILIT Y S TATEMENT
All code and data needed to replicate this study are publicly available 
at https://github.com/DanOv ando/eval- coms.

ORCID
Daniel Ovando  https://orcid.org/0000-0003-2120-7345 
Christopher M. Free  https://orcid.org/0000-0002-2557-8920 
Olaf P. Jensen  https://orcid.org/0000-0001-7850-6616 
Ray Hilborn  https://orcid.org/0000-0003-2326-2305 

R E FE R E N C E S
Anderson, S. C., Cooper, A. B., Jensen, O. P., Minto, C., Thorson, J. T., 

Walsh, J. C., Afflerbach, J., Dickey- Collas, M., Kleisner, K. M., 
Longo, C., Osio, G. C., Ovando, D., Mosqueira, I., Rosenberg, A. A., 
& Selig, E. R. (2017). Improving estimates of population status and 
trend with superensemble models. Fish and Fisheries, 18(4), 732– 
741. https://doi.org/10.1111/faf.12200

Barman, P. P., Karim, E., Khatun, M. H., Rahman, M. F., Alam, M. S., & Liu, 
Q. (2020). Application of CMSY to estimate biological reference 
points of bombay duck (Harpadon Neherus) from the Bay of Bengal 
Bangladesh. Applied Ecology and Environmental Research, 18(6), 
8023– 8034. https://doi.org/10.15666/ aeer/1806_80238034

Bockstoce, J. R., & Botkin, D. B. (1983). The historical status and reduc-
tion of the western Arctic bowhead whale (Balaena mysticetus) 
population by the pelagic whaling industry, 1848- 1914 (No. 5; pp. 
107– 141). Report of the International Whaling Commission.

Bouch, P., Minto, C., & Reid, D. G. (2021). Comparative performance of 
data- poor CMSY and data- moderate SPiCT stock assessment meth-
ods when applied to data- rich, real- world stocks. ICES Journal of 
Marine Science, 78(1), 264– 276. https://doi.org/10.1093/icesj ms/
fsaa220

Branch, T. A., Jensen, O. P., Ricard, D., Ye, Y., & Hilborn, R. (2011). 
Contrasting global trends in marine fishery status obtained from 
catches and from stock assessments. Conservation Biology, 25(4), 
777– 786. https://doi.org/10.1111/j.1523- 1739.2011.01687.x

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5– 32. 
https://doi.org/10.1023/A:10109 33404324

Caddy, J. F., & Gulland, J. A. (1983). Historical patterns of fish stocks. 
Marine Policy, 7(4), 267– 278. https://doi.org/10.1016/0308- 
597X(83)90040 - 4

Costello, C., Ovando, D., Clavelle, T., Strauss, C. K., Hilborn, R., 
Melnychuk, M. C., Branch, T. A., Gaines, S. D., Szuwalski, C. S., 
Cabral, R. B., Rader, D. N., & Leland, A. (2016). Global fishery pros-
pects under contrasting management regimes. Proceedings of the 
National Academy of Sciences, 113(18), 5125– 5129. https://doi.
org/10.1073/pnas.15204 20113

Costello, C., Ovando, D., Hilborn, R., Gaines, S. D., Deschenes, O., & 
Lester, S. E. (2012). Status and solutions for the world’s unassessed 
fisheries. Science, 338(6106), 517– 520. https://doi.org/10.1126/
scien ce.1223389

Cury, P. M., Fromentin, J., Figuet, S., & Bonhommeau, S. (2014). Resolving 
Hjort's Dilemma: How Is Recruitment Related to Spawning Stock 
Biomass in Marine Fish? Oceanography, 27(4), 42– 47. http://www.
jstor.org/stabl e/24862211

Cushing, D. H. (1982). Climate and fisheries. Academic press.
Donoho, D. (2017). 50 years of data science. Journal of Computational and 

Graphical Statistics, 26(4), 745– 766. https://doi.org/10.1080/10618 
600.2017.1384734

FAO. (2020). State of world fisheries and aquaculture 2020: sustainabil-
ity in action. Food & Agriculture org.

Free, C. M., Jensen, O. P., Anderson, S. C., Gutierrez, N. L., Kleisner, K. 
M., Longo, C., Minto, C., Osio, G. C., & Walsh, J. C. (2020). Blood 
from a stone: Performance of catch- only methods in estimating 
stock biomass status. Fisheries Research, 223, 105452. https://doi.
org/10.1016/j.fishr es.2019.105452

Free, C. M., Jensen, O. P., Wiedenmann, J., & Deroba, J. J. (2017). The re-
fined ORCS approach: A catch- based method for estimating stock 

https://github.com/DanOvando/eval-coms
https://orcid.org/0000-0003-2120-7345
https://orcid.org/0000-0003-2120-7345
https://orcid.org/0000-0002-2557-8920
https://orcid.org/0000-0002-2557-8920
https://orcid.org/0000-0001-7850-6616
https://orcid.org/0000-0001-7850-6616
https://orcid.org/0000-0003-2326-2305
https://orcid.org/0000-0003-2326-2305
https://doi.org/10.1111/faf.12200
https://doi.org/10.15666/aeer/1806_80238034
https://doi.org/10.1093/icesjms/fsaa220
https://doi.org/10.1093/icesjms/fsaa220
https://doi.org/10.1111/j.1523-1739.2011.01687.x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/0308-597X(83)90040-4
https://doi.org/10.1016/0308-597X(83)90040-4
https://doi.org/10.1073/pnas.1520420113
https://doi.org/10.1073/pnas.1520420113
https://doi.org/10.1126/science.1223389
https://doi.org/10.1126/science.1223389
http://www.jstor.org/stable/24862211
http://www.jstor.org/stable/24862211
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1016/j.fishres.2019.105452
https://doi.org/10.1016/j.fishres.2019.105452


    |  629OVANDO et Al.

status and catch limits for data- poor fish stocks. Fisheries Research, 
193, 60– 70. https://doi.org/10.1016/j.fishr es.2017.03.017

Froese, R., Demirel, N., Coro, G., Kleisner, K. M., & Winker, H. (2017). 
Estimating fisheries reference points from catch and resilience. Fish 
and Fisheries, 18(3), 506– 526. https://doi.org/10.1111/faf.12190

Froese, R., & Kesner- Reyes, K. (2002). Impact of fishing on the abun-
dance of marine species. ICES CM, 50, 12.

Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A. C., 
Dimarchopoulou, D., Scarcella, G., Quaas, M., & Matz- Lück, N. 
(2018). Status and rebuilding of European fisheries. Marine Policy, 
93, 159– 170. https://doi.org/10.1016/j.marpol.2018.04.018

Froese, R., Zeller, D., Kleisner, K., & Pauly, D. (2012). What catch data can 
tell us about the status of global fisheries. Marine Biology, 159(6), 
1283– 1292. https://doi.org/10.1007/s0022 7- 012- 1909- 6

Garcia, S. M., & Grainger, R. J. R. (2005). Gloom and doom? The fu-
ture of marine capture fisheries. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 360(1453), 21– 46. https://doi.
org/10.1098/rstb.2004.1580

Grainger, R. J., & Garcia, S. M. (1996). Chronicles of marine fishery landings 
(1950– 1994): Trend analysis and fisheries potential. FAO.

Harford, W. J., & Carruthers, T. R. (2017). Interim and long- term per-
formance of static and adaptive management procedures. 
Fisheries Research, 190, 84– 94. https://doi.org/10.1016/j.fishr 
es.2017.02.003

Hilborn, R. W. (2007). Biodiversity loss in the ocean: How bad is it? 
Science (New York, NY), 316(5829), 1281– 1284.

Hilborn, R., Amoroso, R. O., Anderson, C. M., Baum, J. K., Branch, T. 
A., Costello, C., de Moor, C. L., Faraj, A., Hively, D., Jensen, O. P., 
Kurota, H., Little, L. R., Mace, P., McClanahan, T., Melnychuk, M. 
C., Minto, C., Osio, G. C., Parma, A. M., Pons, M. … Ye, Y. (2020). 
Effective fisheries management instrumental in improving fish 
stock status. Proceedings of the National Academy of Sciences, 117(4), 
2218– 2224. https://doi.org/10.1073/pnas.19097 26116

Hilborn, R., & Branch, T. A. (2013). Fisheries: Does catch reflect abun-
dance? No, it is misleading. Nature, 494(7437), 303– 306. https://
doi.org/10.1038/494303a

Hilborn, R., & Walters, C. J. (1992). Quantitative fisheries stock assessment. 
Springer. https://doi.org/10.1007/978- 1- 4615- 3598- 0

Kell, L. T., Mosqueira, I., Grosjean, P., Fromentin, J.- M., Garcia, D., Hillary, 
R., Jardim, E., Mardle, S., Pastoors, M. A., & Poos, J. J. (2007). FLR: 
An open- source framework for the evaluation and development of 
management strategies. ICES Journal of Marine Science, 64(4), 640– 
646. https://doi.org/10.1093/icesj ms/fsm012

Kelleher, K., Westlund, L., Hoshino, E., Mills, D., Willmann, R., de Graaf, 
G., & Brummett, R. (2012). Hidden harvest: The global contribution 
of capture fisheries. Worldbank; WorldFish.

Kimura, D. K., Balsiger, J. W., & Ito, D. H. (1984). Generalized stock re-
duction analysis. Canadian Journal of Fisheries and Aquatic Sciences, 
41(9), 1325– 1333. https://doi.org/10.1139/f84- 162

Kimura, D. K., & Tagart, J. V. (1982). Stock reduction analysis, another 
solution to the catch equations. Canadian Journal of Fisheries and 
Aquatic Sciences, 39(11), 1467– 1472. https://doi.org/10.1139/
f82- 198

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer. 
https://doi.org/10.1007/978- 1- 4614- 6849- 3

Martell, S., & Froese, R. (2013). A simple method for estimating MSY from 
catch and resilience. Fish and Fisheries, 14(4), 504– 514. https://doi.
org/10.1111/j.1467- 2979.2012.00485.x

Melnychuk, M. C., Peterson, E., Elliott, M., & Hilborn, R. (2017). Fisheries 
management impacts on target species status. Proceedings of 
the National Academy of Sciences, 114(1), 178– 183. https://doi.
org/10.1073/pnas.16099 15114

Murawski, S., Methot, R., Tromble, G., Hilborn, R. W., Briggs, J. C., Worm, 
B., Barbier, E. B., Beaumont, N., Duffy, J. E., & Folke, C. (2007). 
Biodiversity Loss in the Ocean: How Bad Is It? Science, 316(5829), 
1281– 1284. https://doi.org/10.1126/scien ce.316.5829.1281b

Ovando, D., Hilborn, R., Monnahan, C., Rudd, M., Sharma, R., Thorson, 
J. T., Rousseau, Y., & Ye, Y. (2021). Improving estimates of the state 
of global fisheries depends on better data. Fish and Fisheries, 22(6), 
1377– 1391. https://doi.org/10.1111/faf.12593

Palomares, M. L. D., Froese, R., Derrick, B., Meeuwig, J. J., Nöel, S.- L., 
Tsui, G., Woroniak, J., Zeller, D., & Pauly, D. (2020). Fishery biomass 
trends of exploited fish populations in marine ecoregions, climatic 
zones and ocean basins. Estuarine, Coastal and Shelf Science, 243, 
106896. https://doi.org/10.1016/j.ecss.2020.106896

Pauly, D. (2007). The sea around us project: Documenting and commu-
nicating global fisheries impacts on marine ecosystems. AMBIO: A 
Journal of the Human Environment, 36(4), 290– 295.

Pella, J. J., & Tomlinson, P. K. (1969). A generalized stock production 
model. Inter- American Tropical Tuna Commission Bulletin, 13(3), 
416– 497.

Pons, M., Cope, J. M., & Kell, L. T. (2020). Comparing performance of 
catch- based and length- based stock assessment methods in data- 
limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 
https://doi.org/10.1139/cjfas - 2019- 0276

Pons, M., Melnychuk, M. C., & Hilborn, R. (2018). Management effec-
tiveness of large pelagic fisheries in the high seas. Fish and Fisheries, 
19(2), 260– 270. https://doi.org/10.1111/faf.12253

Poole, D., & Raftery, A. E. (2000). Inference for deterministic simu-
lation models: The Bayesian melding approach. Journal of the 
American Statistical Association, 95(452), 1244– 1255. https://doi.
org/10.1080/01621 459.2000.10474324

Punt, A. E., Butterworth, D. S., de Moor, C. L., Oliveira, J. A. A. D., & 
Haddon, M. (2016). Management strategy evaluation: Best prac-
tices. Fish and Fisheries, 17(2), 303– 334. https://doi.org/10.1111/
faf.12104

Ricard, D., Minto, C., Jensen, O. P., & Baum, J. K. (2012). Examining the 
knowledge base and status of commercially exploited marine species 
with the RAM Legacy Stock Assessment Database. Fish and Fisheries, 
13(4), 380– 398. https://doi.org/10.1111/j.1467- 2979.2011.00435.x

Rosenberg, A. A., Fogarty, M. J., Cooper, A. B., Dickey- Collas, M., Fulton, 
E. A., Gutiérrez, N. L., Hyde, K. J., Kleisner, K. M., Kristiansen, T., & 
Longo, C. (2014). Developing new approaches to global stock sta-
tus assessment and fishery production potential of the seas. FAO 
Fisheries and Aquaculture Circular, 1086, 1.

Rosenberg, A. A., Kleisner, K. M., Afflerbach, J., Anderson, S. C., Dickey- 
Collas, M., Cooper, A. B., Fogarty, M. J., Fulton, E. A., Gutiérrez, N. 
L., Hyde, K. J. W., Jardim, E., Jensen, O. P., Kristiansen, T., Longo, 
C., Minte- Vera, C. V., Minto, C., Mosqueira, I., Osio, G. C., Ovando, 
D., … Ye, Y. (2018). Applying a new ensemble approach to estimat-
ing stock status of marine fisheries around the world. Conservation 
Letters, 11(1), e12363. https://doi.org/10.1111/conl.12363

Schaefer, M. B. (1954). Some aspects of the dynamics of populations 
important to the management of the commercial marine fisheries. 
Inter- American Tropical Tuna Commission Bulletin, 1(2), 23– 56.

Sharma, R., Winker, H., Levontin, P., Kell, L., Ovando, D., Palomares, M. 
L. D., Pinto, C., & Ye, Y. (2021). Assessing the potential of catch- 
only models to inform on the state of global fisheries and the UN’s 
SDGs. Sustainability, 13(11), 6101. https://doi.org/10.3390/su131 
16101

Smith, D. C., Haddon, M., Punt, A. E., Gardner, C., Little, L. R., Mayfield, 
S., O’Neill, M. F., Saunders, T., Stewart, J., Wise, B., Fulton, E. A., 
& Conron, S. (2021). Evaluating the potential for an increased and 
sustainable commercial fisheries production across multiple juris-
dictions and diverse fisheries. Marine Policy, 124, 104353. https://
doi.org/10.1016/j.marpol.2020.104353

Szuwalski C. S., Vert- Pre K. A., Punt A. E., Branch T. A., Hilborn R. (2015). 
Examining common assumptions about recruitment: a meta- analysis 
of recruitment dynamics for worldwide marine fisheries. Fish and 
Fisheries, 16(4), 633– 648. http://dx.doi.org/10.1111/faf.12083

Thorson, J. T. (2020). Predicting recruitment density dependence and in-
trinsic growth rate for all fishes worldwide using a data- integrated 

https://doi.org/10.1016/j.fishres.2017.03.017
https://doi.org/10.1111/faf.12190
https://doi.org/10.1016/j.marpol.2018.04.018
https://doi.org/10.1007/s00227-012-1909-6
https://doi.org/10.1098/rstb.2004.1580
https://doi.org/10.1098/rstb.2004.1580
https://doi.org/10.1016/j.fishres.2017.02.003
https://doi.org/10.1016/j.fishres.2017.02.003
https://doi.org/10.1073/pnas.1909726116
https://doi.org/10.1038/494303a
https://doi.org/10.1038/494303a
https://doi.org/10.1007/978-1-4615-3598-0
https://doi.org/10.1093/icesjms/fsm012
https://doi.org/10.1139/f84-162
https://doi.org/10.1139/f82-198
https://doi.org/10.1139/f82-198
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1111/j.1467-2979.2012.00485.x
https://doi.org/10.1111/j.1467-2979.2012.00485.x
https://doi.org/10.1073/pnas.1609915114
https://doi.org/10.1073/pnas.1609915114
https://doi.org/10.1126/science.316.5829.1281b
https://doi.org/10.1111/faf.12593
https://doi.org/10.1016/j.ecss.2020.106896
https://doi.org/10.1139/cjfas-2019-0276
https://doi.org/10.1111/faf.12253
https://doi.org/10.1080/01621459.2000.10474324
https://doi.org/10.1080/01621459.2000.10474324
https://doi.org/10.1111/faf.12104
https://doi.org/10.1111/faf.12104
https://doi.org/10.1111/j.1467-2979.2011.00435.x
https://doi.org/10.1111/conl.12363
https://doi.org/10.3390/su13116101
https://doi.org/10.3390/su13116101
https://doi.org/10.1016/j.marpol.2020.104353
https://doi.org/10.1016/j.marpol.2020.104353
http://dx.doi.org/10.1111/faf.12083


630  |    OVANDO et Al.

life- history model. Fish and Fisheries, 21(2), 237– 251. https://doi.
org/10.1111/faf.12427

Thorson, J. T., Branch, T. A., & Jensen, O. P. (2012). Using model- based 
inference to evaluate global fisheries status from landings, loca-
tion, and life history data. Canadian Journal of Fisheries and Aquatic 
Sciences, 69(4), 645– 655. https://doi.org/10.1139/f2012 - 016

Thorson, J. T., Minto, C., Minte- Vera, C. V., Kleisner, K. M., & Longo, C. 
(2013). A new role for effort dynamics in the theory of harvested 
populations and data- poor stock assessment. Canadian Journal 
of Fisheries and Aquatic Sciences, 70(12), 1829– 1844. https://doi.
org/10.1139/cjfas - 2013- 0280

Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A practical 
guide to selecting models for exploration, inference, and prediction in 
ecology. Ecology, 102(6), e03336. https://doi.org/10.1002/ecy.3336

Vasconcellos, M., & Cochrane, K. (2005). Overview of world status of data- 
limited fisheries: Inferences from landings statistics. In G. H. Kruse, 
V. F. Gallucci, D. E. Hay, R. I. Perry, R. M. Peterman, T. C. Shirley, P. 
D. Spencer, & B. Wilson (Eds.), Fisheries assessment and management 
in data- limited situations (pp. 1– 20). Alaska Sea Grant, University of 
Alaska Fairbanks. https://doi.org/10.4027/famdls.2005.01

Vert- pre, K. A., Amoroso, R. O., Jensen, O. P., & Hilborn, R. (2013). 
Frequency and intensity of productivity regime shifts in marine 
fish stocks. Proceedings of the National Academy of Sciences, 110(5), 
1779– 1784. https://doi.org/10.1073/pnas.12148 79110

Walsh, J. C., Minto, C., Jardim, E., Anderson, S. C., Jensen, O. P., 
Afflerbach, J., Dickey- Collas, M., Kleisner, K. M., Longo, C., Osio, 
G. C., Selig, E. R., Thorson, J. T., Rudd, M. B., Papacostas, K. J., 
Kittinger, J. N., Rosenberg, A. A., & Cooper, A. B. (2018). Trade- offs 
for data- limited fisheries when using harvest strategies based on 
catch- only models. Fish and Fisheries, 19(6), 1130– 1146. https://doi.
org/10.1111/faf.12316

Walters, C. J., Martell, S. J. D., & Korman, J. (2006). A stochastic ap-
proach to stock reduction analysis. Canadian Journal of Fisheries and 
Aquatic Sciences, 63(1), 212– 223. https://doi.org/10.1139/f05- 213

Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, 
B. S., Jackson, J. B. C., Lotze, H. K., Micheli, F., Palumbi, S. R., Sala, 
E., Selkoe, K. A., Stachowicz, J. J., & Watson, R. (2006). Impacts of 
Biodiversity Loss on Ocean Ecosystem Services. Science, 314(5800), 
787– 790. https://doi.org/10.1126/scien ce.1132294

Worm, B., Hilborn, R., Baum, J. K., Branch, T. A., Collie, J. S., Costello, C., 
Fogarty, M. J., Fulton, E. A., Hutchings, J. A., Jennings, S., Jensen, O. 
P., Lotze, H. K., Mace, P. M., McClanahan, T. R., Minto, C., Palumbi, 
S. R., Parma, A. M., Ricard, D., Rosenberg, A. A., … Zeller, D. (2009). 
Rebuilding Global Fisheries. Science, 325(5940), 578– 585. https://
doi.org/10.1126/scien ce.1173146

Zhou, S., Punt, A. E., Smith, A. D. M., Ye, Y., Haddon, M., Dichmont, C. M., 
& Smith, D. C. (2018). An optimized catch- only assessment method 
for data poor fisheries. ICES Journal of Marine Science, 75(3), 964– 
976. https://doi.org/10.1093/icesj ms/fsx226

Zhou, S., Punt, A. E., Ye, Y., Ellis, N., Dichmont, C. M., Haddon, M., Smith, 
D. C., & Smith, A. D. (2017). Estimating stock depletion level from 
patterns of catch history. Fish and Fisheries, 18(4), 742– 751. https://
doi.org/10.1111/faf.12201

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Ovando, D., Free, C. M., 
Jensen, O. P., & Hilborn, R. (2022). A history and evaluation 
of catch- only stock assessment models. Fish and Fisheries, 23, 
616– 630. https://doi.org/10.1111/faf.12637

https://doi.org/10.1111/faf.12427
https://doi.org/10.1111/faf.12427
https://doi.org/10.1139/f2012-016
https://doi.org/10.1139/cjfas-2013-0280
https://doi.org/10.1139/cjfas-2013-0280
https://doi.org/10.1002/ecy.3336
https://doi.org/10.4027/famdls.2005.01
https://doi.org/10.1073/pnas.1214879110
https://doi.org/10.1111/faf.12316
https://doi.org/10.1111/faf.12316
https://doi.org/10.1139/f05-213
https://doi.org/10.1126/science.1132294
https://doi.org/10.1126/science.1173146
https://doi.org/10.1126/science.1173146
https://doi.org/10.1093/icesjms/fsx226
https://doi.org/10.1111/faf.12201
https://doi.org/10.1111/faf.12201
https://doi.org/10.1111/faf.12637

