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A B S T R A C T

Use of data-limited methods for setting target catches is increasing in the Northeast U.S., but there remains
considerable uncertainty over which methods may be suitable for stocks in the region. We retrospectively
evaluated the ability of data-limited methods to set target catches close to the overfishing limit for data-rich
stocks in the Northeast U.S. Methods explored include options that would be used in truly data-poor cases (i.e.,
catch-only methods), but we also evaluated methods with different data requirements for stocks that have in-
formation beyond a catch time series. The majority of options we explored that used average catches over some
portion of the time period, or adjusted the recent catches based on trends in an index were sensitive to the level
of historical exploitation. Such methods produced target catches above the overfishing limit for stocks that had a
history of overfishing, or target catches that were overly conservative for stocks with a history of light ex-
ploitation. Careful consideration of the level of historical exploitation rates, if possible, is therefore needed if
using such approaches are to be applied. Catch curve methods, which require catch-at-age information, were the
only approaches not sensitive to the level of historical exploitation, and were largely effective at setting target
catches close to the overfishing limit, even for stocks with intense historical exploitation rates. However, there
were cases where catch curve methods produced unsustainable target catches, particularly for stocks with
episodic recruitments, such that care is needed when implementing catch curve methods.

1. Introduction

When possible, fisheries management actions are based on estimates
of current stock status and management targets produced from com-
plex, age-structured stock assessment models (Geromont and
Butterworth, 2015). These models require large amounts of data, as
well as analyst expertise and time to construct and run the model, and
summarize model output. In the U.S., when such “data rich” assess-
ments are not possible, catch limits must still be set for federally-
managed fisheries, and a number of data-limited methods have been
developed to set catch limits for cases with varying amounts of data.

The reasons preventing age-structured or less complex assessment
models from being used vary. In truly data-poor cases, the necessary
data are not available to run an assessment model, and the available
catch time series may need to be used, often with assumptions about life
history and relative stock status, to set target catches (MacCall, 2009;
Berkson et al., 2011; Dick and MacCall, 2011). Stocks may have

sufficient data to conduct an assessment, but the model results may be
deemed too uncertain to be the basis for setting catch targets. One
possible reason for this uncertainty is that some of the data may be
uninformative, or different datasets may provide conflicting signals
regarding population trend that cannot be reconciled given model as-
sumptions. Such a case can be thought of as data-rich but information-
poor, and more data-moderate approaches may be used that utilize
available information beyond a catch time series, including indices of
abundance (e.g., Geromont and Butterworth, 2014) and age-structured
information (e.g., Thorson and Cope, 2015; for simplicity we herein
refer to both data-poor and –moderate approaches for setting catch
targets as data-limited methods).

Recent reviews conducted to determine the methods for setting
target catches in U.S. fisheries revealed that data-limited methods were
the most common basis for setting the acceptable biological catch
(ABC) and annual catch limits (ACL; Berkson and Thorson, 2014;
Newman et al., 2015). As of 2014, 30% of the ACLs were based on
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conventional, data-rich stock assessments, and 70% used data-limited
methods (59% were data-poor and 11% were data-moderate; Newman
et al., 2015). However, use of data-limited methods was not uniform
across the Regional Management Councils, as regions such as the Car-
ibbean and Western Pacific relied heavily on data-limited methods,
while the Northeast U.S. (comprised of the Mid-Atlantic and New
England regions) relied primarily on data-rich stock assessments
(Berkson and Thorson, 2014; Newman et al., 2015).

While the Northeast U.S. may be thought of as data-rich region, use
of data-limited methods is increasing. In the Mid-Atlantic, age-based
assessments for Atlantic mackerel (Scomber scombrus) and black sea
bass (Centropristis striata) did not pass review (Deroba et al., 2010;
NEFSC, 2012), and explorations of a wide range of data-limited
methods were used to help inform the determination of the ABC
(Wiedenmann, 2015; McNamee et al., 2015). In New England, recent
assessments did not pass review for the Georges Bank stocks of Atlantic
cod (Gadus morhua) and yellowtail flounder (Limanda ferruginea), and
for witch flounder (Glyptocephalus cynoglossus), and data-limited ap-
proaches were used to set the associated ABCs (Legault et al., 2014;
NEFSC, 2015a,b). In all of these examples, the use of data-limited
methods has been viewed as an interim measure until a new assessment
model can be developed to address the issues identified in the failed
assessments.

Although exploration of data-limited methods has increased in the
Northeast U.S., there remains considerable debate about which
methods may be suitable for stocks in the region. Developing support
for or against particular data-limited methods requires both simulation
testing (e.g., Wiedenmann et al., 2013; Carruthers et al., 2014;
Geromont and Butterworth, 2015) and validation using information
from stock assessments (Kokkalis et al., 2017; Sagarese et al., In press).
Our aim in this paper was to identify effective data-limited methods for
setting catch targets using information from data-rich stocks in the re-
gion. We retrospectively evaluated the performance of data-limited
methods with varying data requirements encompassing methods that
would be used for truly data-poor stocks, to more data-intensive
methods that would be used for data-rich, information poor stocks.
Using the most recent stock assessment as the source of information for
historical stock dynamics, we compared the target catches from the
data-limited methods to estimates of the overfishing limit (OFL; the
catch that defines overfishing). Our focus was to identify which options,
if any, were able to limit overfishing without being too conservative.

2. Methods

2.1. Data-limited methods

We applied 24 data-limited methods for setting target catches to 19
stocks managed by the New England and Mid-Atlantic Fishery
Management Councils (NEFMC and MAFMC, respectively; see Table 1
for a list of the stocks). These stocks have a varied history of ex-
ploitation rates, although higher exploitation rates were generally ob-
served in the 1990s than more recently (Fig. 1). The data-limited
methods we used can be broadly classified into four categories: average
catch methods, index-based methods, catch curve methods, and pro-
duction models. These methods are detailed in Table 2, but we provide
a brief summary of the general approaches here. Average catch methods
set the target catch as some summary statistic (e.g., the mean or median
catch) over part or all of the available catch data. Most of the average
catch methods we explored only required a catch time series, although
one method (DCAC; MacCall, 2009) also required some additional as-
sumptions (Table 2). Index-based methods are an extension of the
average catch methods, adjusting recent average catches based on
trends in an index of abundance to set the target catch. These methods
therefore require an index of abundance and total catch over time.
Catch curve methods aim to estimate total mortality (Z) using numer-
ical catch-at-length or catch-at-age data. Although length data may be

more readily available in data-limited cases, we used only catch-at-age
data because length data were often not reported in the assessments.
Using catch-at-age data, Z is estimated by fitting a log-linear model to
the fully-selected ages, and is then used with other assumptions de-
pending on the method (Table 2) to adjust the recent average catch to
generate a target catch. Finally, production models use an underlying
surplus production model to estimate current biomass and reference
points (more detail on the production models is provided below).

Our goal was not to test every possible data-limited method, but
rather to understand the behaviors of a subset of methods in application
to data-rich stocks. Therefore, the methods we used are not an ex-
haustive list of the possibilities. We omitted methods that required a
complete time series of catch data (i.e., DB-SRA and its variants; Dick
and MacCall, 2011) because complete catch histories were not available
for any of the stocks in the region. In addition, we omitted the majority
of methods that required assumptions about absolute current stock
biomass (e.g., 10,000mt), current relative status (e.g., the ratio of
current to unfished biomass, or B /B0), or relative change in abundance
over the time series (e.g., a 30% decline). We included two methods
that required such assumptions. The first is an average catch method
that requires a user-specified assumption about stock depletion over the
time period of available catches (DCAC) because this approach has been
used across the U.S. (primarily in the Pacific; Newman et al., 2015;
PFMC, 2016) and it has been suggested as a potential fallback method
for some assessments in the Northeast U.S. (ASMFC, 2015a,b; Rago,
2017). DCAC adjusts the historical average catch to account for a one-
time “windfall” catch that is the result of stock depletion, producing an
estimate of yield that was likely to be sustainable over the same time
period of available catch data. We explored fixed assumptions about
depletion across stocks and across years in DCAC, assuming 60% and
80% declines in biomass relative to unfished biomass, B0. We also ex-
plored a “data-rich” version of DCAC when biomass is known (MacCall,
2009), for comparison with the methods requiring multiple assump-
tions in the absence of biomass estimates (Table 2). The second method
we used falls into the production model category (SPMSY), and require
bounds for uniform distributions of relative status B/B0 in the first and
last years of available catch data. Martell and Froese (2013) provide
guidance on the bounds based on the catch in those years relative to the
maximum catch in the time series, and we used their recommended
bounds here (Table 2).

2.2. Inputs and stock information

For each stock we used the most recent stock assessment that passed
review as the primary source of information (Deroba, 2015; Legault
et al., 2013; NEFSC, 2012, 2013, 2015a, 2017; Terceiro, 2016). We
compared target catches from each data-limited method with the esti-
mated OFL, so we needed all the necessary inputs for each method, as
well as the estimated OFL over time for each stock. Time-varying esti-
mates of the OFL were not provided in the assessments, but we calcu-
lated the OFL for the jth stock in each year, t, with

∑=
+

− − +

OFL j t
s j a t F j

s j a t F j M j a t
W j a t N j a t

e

( , )
( , , ) ( )
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(1 )
a

a
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where a denotes age, N, s, and FMSY are the model estimates of nu-
merical abundance, fishery selectivity (proportion-at-age subject to
fishing mortality), and limit fishing mortality rate, W is the observed
weight in the catch, and M is the assumed rate of natural mortality.
Note that this is an estimate of the OFL in hindsight from the most
recent assessment for each stock, and is not the OFL that was specified
for management purposes following earlier assessments.

Inputs to the data-limited methods obtained from the stock assess-
ments were the annual observations of total catch (by weight) and
numerical catch-at-age, and aggregate indices of abundance (kg per tow
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in the spring and fall coastwide bottom trawl survey) used in the as-
sessment models. When long time periods of catch data were available,
we omitted data prior to 1978 as very large catches occurred by foreign
fleets prior to the passing of the Magnuson Act (Sosebee et al., 2006),
and such large catches could influence methods that rely on an average
catch over an appropriate time period. Catch-at-age data included a
plus group, where catches across older ages are aggregated into a single
age class. We explored the effect of including or excluding the plus
group in the catch curve estimation of Z, and found that excluding the
plus group generally resulted in smaller estimates of Z, with estimates
close to or below 0 (indicating increased abundance-at age in the catch)
produced more frequently than when the plus group was included
(Fig. 2). We therefore included the plus group in the calculation of Z.
For black sea bass (Centropristis striatus) only the numerical fall index
was available, and for bluefish (Pomatomus saltatrix) we used the

recreational CPUE index from the Marine Recreational Information
Program (MRIP), as bluefish are likely poorly sampled in the bottom
trawl survey.

The catch curve methods and DCAC required additional life history
information (Table 2). DCAC requires estimates of M, FMSY/M, and
BMSY/B0. For BMSY/B0we used the spawning potential ratio (SPR)
proxies used to define reference points for each stock, which was 0.4 for
all but two stocks (Table 3), and this value is identical to the mean
value across stocks estimated in the meta-analysis of Thorson et al.
(2012). We used the assumed M from each assessment, as well as the
ratio of the assessment-estimated FMSY to the assumed M. Values for
FMSY/M were generally comparable to the mean family-level estimates
from the meta-analysis of Zhou et al. (2012), although some of our
estimates were considerably higher (Table 3). Using these values as
inputs to DCAC should reduce uncertainty and potentially improve

Table 1
List of stocks explored in this analysis. Management refers to the regional fishery management council responsible for managing the stock (either New England,
NEFMC, or Mid-Atlantic, MAFMC). The abbreviated name is how stocks are referenced in the text, and the code name is how they are referenced in Figs. 2, 6, and 8.
Years refers to the years of catch and index data, used in our analysis. The first possible year of catch or index data for all stocks was 1978, and we excluded data from
earlier years to omit the very large catches from the foreign fleets prior to the passing of the original Magnuson Act (Sosebee et al., 2006). For all stocks we also used
assessment estimates from 1990 to the final year listed here to calculate the OFL (Eq. (1)).

Full Stock Name Scientific Name Abbreviated
name (code)

Management Years

Georges Bank Atlantic cod Gadus morhua GB cod (GBC) NEFMC 1978–2010
Gulf of Maine Atlantic cod Gadus morhua GOM cod (GMC) NEFMC 1982–2012
Georges Bank haddock Melanogrammus aegelfinus GB haddock (GBH) NEFMC 1981–2012
Gulf of Maine haddock Melanogrammus aegelfinus GOM haddock (GMH) NEFMC 1978–2012
Georges Bank yellowtail flounder Limanda ferruginea GB yellowtail flounder (GBYTF) NEFMC 1979–2010
Cape Cod/Gulf of Maine yellowtail flounder Limanda ferruginea CC/GOM yellowtail flounder (GMYTF) NEFMC 1978–2012
Southern New England/Mid-Atlantic yellowtail flounder Limanda ferruginea SNE/MA yellowtail flounder (SNYTF) NEFMC 1981–2012
Georges Bank winter flounder Pseudopleuronectes americanus GB winter flounder (GBWIN) NEFMC 1982–2012
Southern New England/Mid-Atlantic winter flounder Pseudopleuronectes americanus SNE/MA winter flounder (SNWIN) NEFMC 1981–2012
witch flounder Glyptocephalus cynoglossus witch flounder (WCH) NEFMC 1982–2010
American plaice Hippoglossoides platessoides Plaice (APL) NEFMC 1980–2012
Acadian redfish Sebastes fasciatus Redfish (RED) NEFMC 1978–2012
white hake Urophycis tenuis white hake (WHK) NEFMC 1978–2012
pollock Pollachius virens pollock (PLK) NEFMC 1978–2012
Atlantic herring Clupea harengus herring (HER) NEFMC 1978–2012
Summer flounder Paralichthys dentatus Summer (SFL) MAFMC 1982–2012
Scup Stenotomus chrysops Scup (SCP) MAFMC 1978–2012
Bluefish Pomatomus saltatrix Bluefish (BLUE) MAFMC 1982–2012
Black sea bass Centropristis striata BSB (BSB) MAFMC 1980–2012

Fig. 1. The mean annual F relative to FMSY across stocks used
in this study from New England (solid line) and the Mid-
Atlantic (dashed line). The light and dark shaded regions re-
present the range of observed F /FMSY for New England and
the Mid-Atlantic, respectively. The horizontal line at 1 re-
presents FMSY, above which overfishing is occurring.
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Table 2
Brief description and equations for the data-limited control rules used, with the source for each control rule when available. Many of the approaches use multiyear
averages of catch and index data, which is denoted C̄N , and IN̄ , respectively, where N is the number of the most recent years used to calculate the average (typically 3,
5, 10, or all (Y) available years). For the index-based methods, when two indices of abundance were available for a stock (i.e., spring and fall survey), we calculated a
single, unweighted average index across surveys for use in the methods. All of the catch curve methods used the last three years of available catch-at-age data, and
catch data were summed across those years for each age to produce a single catch-at-age vector to estimate Z. For assumed inputs to the different methods, the
assumed CV used to generate a distribution for each input is in parentheses (see Table 3 for input values and definitions).

Data-limited method
abbreviation

Description Inputs Source

Average catch methods
AvC, AC_3yr, AC5yr = ∑ = − +C C t( )targ T t Y T

Y1
1 , where Y is total number of years available, and T is

number of years to use (T = all years (Y), or the most recent 3, or 5 years)

Total catch (by weight)

AC75_3yr, AC75_5yr 75% of the average catch over the last 3 or 5 years

= ∑ = − +C C t0.75 ( )targ T t Y T
Y1

1 , with T=3 or 5.

Total catch (by weight)

MC, MC_50 The median, and 50% of the median catch over the whole time period Total catch (by weight)
DCAC_20,

DCAC_40
Depletion-corrected average catch. A method for adjusting average catches based
on an assumed change in biomass over the time period.

= ∑ +=
=

⋅

−( )C C t Y( )targ t
t Y

FMSY BMSY B1
Δ

/ 0

1

Where FMSY is calculated as the product of the assumed M and the assumed ratio of
FMSY to M. Δ is the assumed depletion over the time period relative to
B0 −B B Y B( (1) ( )))/ 0, and we assumed values of 0.8 and 0.6 for the DCAC_20 and
DCAC_40 runs, respectively.

Total catch (by weight), assumed FMSY/M
(0.2), BMSY/B0(0.05),M(0.2), and Δ(0.2)

MacCall (2009)

DCAC_DR The “data-rich” version of DCAC, calculated using estimates of the exploitable
biomass (Be) in the first (t=1) and last (t = Y) years of available catch

data =
∑ =

= − −
C, targ

t
t Y C t Be Be

Y
( 1 ( ) ( (1) (Y)))

Total catch (by weight), estimates of
exploitable biomass

MacCall (2009)

Catch Curve Methods
BK_CC1

BK_CC3
BK_CC5

Variations of the Beddington and Kirkwood life history method combined with
catch curve analysis.

= ⋅ − − −

−
Ctarg

k C e F

Lratio
0.6 3̄ (1 ) 1

0.67
, where C̄3 is the average catch in the last 3 years, F is

estimated using the assumed M and the catch curve estimate of Z (F = Z-M), k is the
von-Bertalanffy growth rate, and Lratio is the ratio of the length at first capture to L∞.

The differences across BK_CC1, BK_CC3, and BK_CC5 are the assumption about Lratio
(0.1, 0.3, and 0.5, respectively).

Total catch (by weight), numerical catch-
at-age, assumed k(0.1), L∞(0.1), t0(0.1), b
(0.1), c(0.1),M(0.2), Lat first capture
(0.2).

Beddington and
Kirkwood (2005)

YPR_CC Nearly identical to Fdem_CC, = − − −C F C e¯ (1 ) ,targ MSY F3 1 but with FMSY based on the
F0.1 estimate from a yield-per-recruit model, assuming knife-edge selection at the
length of full selection (Table 3).

Total catch (by weight), numerical catch-
at-age, assumed amax, k(0.1), L∞(0.1),
t0(0.1), b(0.1), c(0.1),M(0.2), LFS(0.2)

Carruthers and Hordyk
(2017)

Fdem_CC = − − −C F C e¯ (1 ) ,targ MSY F3 1 where C̄3 and F are described in the BK_CC methods, and
FMSY is calculated as r/2, with r calculated using the demographic approach of
McAllister et al. (2001).

Total catch (by weight), numerical catch-
at-age, identical assumed inputs as
YPR_CC, but also with h(0.2).

Carruthers and Hordyk
(2017); McAllister
et al. (2001)

M_CC Nearly identical to Fdem_CC and YPR_CC,
= − − −C F C e¯ (1 ) ,targ MSY F3 1 but with FMSY set equal to the assume value of M

Total catch (by weight), numerical catch-
at-age, M(0.2)

Index-based methods
Islope1

Islope4
The average catch from the most recent 5 years (C̄5 ) is adjusted based on the slope
(λ) of a log-transformed index of abundance over the same period.

= + ∅C λ ηC(1 ) ¯targ 5 .
For Islope1 ∅ =0.4, and η =0.8. For Islope4 ∅ =0.2, and η =0.6.

Total catch (by weight), survey indices of
abundance.

Geromont and
Butterworth (2014)

Itarget1
Itrarget4

Uses the recent 5 and 10 year average index (Ī5 and I1̄0 , respectively) and C̄5 to
calculate Ctarg with

= ⎧
⎨⎩

+ − − >
>

C
ηC I I γI I I I
ηC I I I I

0.5 ¯ (1 ( ¯ 0.8 ¯ )/( ¯ 0.8 ¯ )) ¯ 0.8 ¯

0.5 ¯ ( ¯ /0.8 ¯ ) ¯ 0.8 ¯targ
5 5 10 10 10 5 10

5 5 10 2 5 10

For Itarget1 γ =1.5, and η =1. For Itarget4 γ =2.5, and η =0.7.

Total catch (by weight), survey indices of
abundance.

Geromont and
Butterworth (2014)

GB_slope Similar to the Islope methods, with = + ⋅C λ C(1 ) ¯targ 5 , with estimates of Ctarg more
extreme than± 20% of the most recent catch capped at± 20%.

Total catch (by weight), survey indices of
abundance.

Carruthers and Hordyk
(2017); Geromont and
Butterworth (2014)

PlanB_3 Adjust the 3-year average catch (C̄3 ) based on the transformed slope (λ) of a log-
linear fit to the last 3 years of a loess-smoothed index of abundance. = ⋅C λ C̄targ 3 .
The span for the loess fit was set to 9.9/Y.

Total catch (by weight), survey indices of
abundance.

NEFSC (2015a)

Production models
Schaefer production

model
(called
Production)

A Schaefer surplus production model (B(t) = B(t-1) + rB(t-1)(1-B(t-1)/K – C(t-1))
fit to the available indices of abundance and catch data through year Y, estimating r,
K, and biomass in the first year with available data. The target catch in the final year
Y is =C B Y r( ) /2targ , where r /2 is the estimated FMSY.

Total catch (by weight), survey indices of
abundance.

Schaefer (1954)

SPMSY A “simple method for estimating MSY” that assumes an underlying production
model, and randomly draws values of r and K and starting and ending estimates of
relative depletion (B(1)/K and B(Y)/K) to find the combination of parameters that
are sensible given the catch history (i.e., parameters that results in biomass≤ catch
in any given year are excluded). The target catch in the final year is KB(Y)/K• r /2.

Total catch (by weight), assumed B(1)/K
and B(Y)/K, drawn from uniform
distributions (bounds for the draws
varied based on the catch in those years
relative to the maximum catch, see
Martell and Froese, 2013 for details).

Martell and Froese
(2013)
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performance since these values were also used to calculate the OFL.
MacCall (2009) suggests using DCAC only when M≤0.2yr−1, and also
using FMSY/M ≤ 1,otherwise the correction factor might be too small.
Our estimates of M were mostly ≤0.2yr−1, but FMSY/M values were
sometimes> 1 (Table 3). To test the sensitivity of DCAC to our as-
sumptions, we used the data-rich version that circumvents these as-
sumptions using changes in biomass estimates to adjust the catch
(Table 2).

Inputs for the catch curve methods beyond the catch-at-age data
were used to estimate FMSY using various approaches (Table 2). The
inputs for the various methods included maximum age, steepness of the
stock-recruit relationship, von Bertalanffy growth parameters, length-
weight conversion parameters, and also the length-at-first-capture and
–at-full selection in the fishery. Steepness values were obtained from
Myers et al. (1999). Maximum age and the parameters for the von
Bertalanffy model were taken from the current or past assessments
when available, or from Fishbase (www.fishbase.org). Parameters for

converting length to weight were obtained from Wigley et al. (2003).
We defined length-at-full selection as the mean length calculated from
the von Bertalanffy growth model corresponding to the age at 95%
selection in the fishery. Defining length-at-first capture was challenging
for each stock. For the lone method that required this input, we ex-
plored three versions where length-at-first capture was assumed to be
10, 30, and 50% of the asymptotic length (Table 2). Parameters values
for each stock are listed in Table 3.

2.3. Application

The data extracted for each stock were then used in the data-limited
methods to calculate target catches. We used the data-limited toolkit
(DLMtool; Carruthers and Hordyk, 2017) for our analyses, which is an R
(R Core Team, 2017) package developed to test and apply data-limited
methods for real-world applications. DLM tool has two distinct com-
ponents, a management strategy evaluation (MSE) simulation modules

Fig. 2. Catch curve estimates of total mortality (Z) across years for each stock. Upper: Comparison of Z estimates when the plus group was included in the log-linear
fit to when the plus group was omitted from the fitting. Lower: Comparison of the estimated Z including the plus group to the observed fully-selected Z obtained from
the assessment. The solid line is the 1:1 line, and the dashed line (bottom plot only) is the linear fit, omitting all negative values of Z. Labels have been added to some
of the points to identify specific stocks where 1) negative values of Z were estimated (with or without the plus group), 2) when there was a large discrepancy in
between estimates with or without the plus group included (upper), and 3) when there was a large discrepancy between the estimated Z and the observed Z from the
stock assessment (lower).
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to test methods, and an application side where the available data for a
stock are input to estimate the target catch for each method. We used
the application portion of DLMtool (and not the MSE), which has a wide
range of built-in methods of varying complexity, but it also allows users
to specify their own unique options, or to modify the existing methods
as needed. All but three of the methods we used in DLMtool were either
existing or slight modifications of existing options. We added the data
rich version of DCAC (DCAC_DR), thePlanB_3 index-based method,
currently used as a fallback approach in New England (NEFSC, 2015a;
code obtained here https://github.com/cmlegault/PlanBsmooth/wiki/
Basics), and the M_CC catch curve method that sets FMSY equal to the
assumed M (Table 2). We also modified all of the catch curve methods
to account for low estimates of Z. All of the catch curve methods esti-
mate the mean F in the last three years using the estimated Z and as-
sumed M (F = Z – M), and adjust the average catch over this period up
or down is F is below or above the estimated FMSY, respectively
(Table 2). When M>Z, DLMtool uses a default F of 0.005yr−1, but we
used a minimum F of 0.05yr−1 for all catch curve methods, but also
compared the impact of this minimum to the lower default value.

DLMtool includes methods that use underlying production models,
including DB-SRA (Dick and MacCall, 2011), which we did not use due
to the full catch time series requirement, and SPMSY (the simple
method for estimating MSY; Martell and Froese, 2013), which we did
use. SPMSY is similar to DB-SRA, in that it estimates MSY-based re-
ference points and the OFL in the last year, but it does not require a
complete catch time series (Table 2). In addition to SPMSY, we included
a Schaefer surplus production model in our analysis (Schaefer, 1954),
implemented outside of the DLMtool framework. Parameters for the
surplus production model (r, K, and starting biomass relative to K) were
estimated by fitting the model to the available indices of abundance
(and estimating catchability for each survey)using a maximum like-
lihood approach (assuming lognormal observation errors in the indices,
with even weighting to each index when multiple were available) and
assuming catch data are known for each stock (Fig. 3). The target catch
was set to the estimate of the OFL in the last year (Y) of each model fit

(OFL = r/2 •B(Y); Table 2). We considered other variations of pro-
duction models where BMSY is not necessarily K/2(Pella and Tomlinson,
1969; Fox, 1970), but ultimately decided on using the Schaefer model,
as it allows for more direct comparisons with SPMSY (which assumes
Schaefer dynamics). A production model fit to catch and survey data is
a simpler form of an assessment, and we are making comparisons to
estimates of the OFL from age-based assessments (Arnold and Heppel,
2015; Cope et al., 2015). The debate over which model may be “cor-
rect” has a long history in fisheries; we are not attempting to address
the debate here. Rather, here we asked that if the true dynamics of a
stock were those estimated in the age-based model, what would the
impact have been if a production model were used to set target catches
(Punt and Szuwalski, 2012)?

For each data-limited method, DLMtool produces a distribution of
target catches (Ctarg) based on the user-specified number of iterations.
The stochastic calculation of the target catch varies by method, with
some methods relying on user-specified levels of uncertainty (an as-
sumed CV for many of the parameters). Other methods rely on the
uncertainty in estimated values, such as the standard deviation of the
average catch over some time period, or in the standard error of esti-
mates of the slope and intercept parameters from a linear fit to the
index of abundance over time, or in the log-transformed numerical
catch at age in a catch curve analysis. For all inputs that required a
specified CV, we used the default CVs specified in DLMtool across
stocks. The highest default CV we used was 0.2, which was for inputs
likely to be more uncertain than others (e.g., M or relative depletion;
Table 2), and resulted in distributions generally ranging from 0.5 to 2
times the specified mean for such inputs (Table 2).

2.4. Performance

We calculated the distribution of target catches using 1000 itera-
tions for each of the methods in DLMtool from 1990 to 2012 for each
stock. We used the median of the distribution of the target catch for
each stock/year/method as our value for comparison with the

Table 3
Stock-specific life history parameters use in DCAC and the catch curve methods. Parameters are as follows: amax is the maximum age; h is the steepness of the stock-
recruit relationship; M is the natural mortality rate, FMSY/M is the ratio of FMSY to M; BMSY/B0 is the fraction of unfished biomass where maximum production occurs;
L∞, k, and t0 are the von Bertalanffy growth model parameters (L(a) = L∞(1−e−k(a−t°)), b and c are the parameters relating length to weight (W(a) = bL(a)c), and
L50 and LFS are the lengths at 50 and full selectivity, respectively. Values for FMSY/M were based on the estimated FMSY and the assumed M from the assessment, and
the value in parentheses is the family-level mean from Zhou et al. (2012). The assumedM was age- and time-invariant for all stocks but summer flounder and Atlantic
herring we used the mean value across fully-selected ages as our assumed M. Estimates of BMSY/B0 are based on the management SPR targets. In DLMtool all of these
specified inputs were set as the mean of lognormal distribution for the methods that used them, and we used the DLMtool default CVs for each of these inputs to
create the distributions (CVs listed in Table 2).

Management Stock ama ha M FMSY/M BMSY /B0 L∞ k t0 b (×10−6) c LFS

NEFMC GOM Cod 16 0.84 0.20 0.925 (1.01) 0.40 150.9 0.11 0.13 5.13 3.16 60.0
GB Cod 16 0.84 0.20 0.85 (1.01) 0.40 114.0 0.22 0.17 7.29 3.08 58.0
GOM Haddock 22 0.74 0.20 1.50 (1.01) 0.40 64.2 0.40 −0.30 9.30 3.02 51.0
GB Haddock 25 0.74 0.20 1.50 (1.01) 0.40 73.8 0.38 0.17 8.13 3.07 51.0
GB yellowtail flounder 12 0.75 0.20 1.25 (1.16) 0.40 50.0 0.33 0.00 5.76 3.13 35.0
SNE/MA yellowtail flounder 12 0.75 0.30 1.17 (1.16) 0.40 35.4 0.91 0.25 5.76 3.13 34.0
CC/GOM yellowtail flounder 12 0.75 0.20 1.40 (1.16) 0.40 48.0 0.35 −0.10 5.76 3.13 36.5
GB winter flounder 19 0.80 0.30 1.40 (1.16) 0.40 58.0 0.28 0.00 8.85 3.11 36.0
SNE/MA winter flounder 16 0.80 0.30 1.08 (1.16) 0.40 46.5 0.32 0.00 10.40 3.04 33.4
Plaice 30 0.80 0.20 1.00 (1.16) 0.40 62.2 0.17 0.00 2.86 3.31 40.0
Witch 25 0.80 0.15 1.20 (1.16) 0.40 60.0 0.15 0.02 2.39 3.26 41.5
Acadian redfish 50 0.47 0.05 0.76 (0.69) 0.50 35.9 0.16 −0.24 8.29 3.20 29.7
White hake 20 0.79 0.20 1.00 (1.01) 0.40 135.3 0.09 −0.89 3.13 3.23 47.0
Pollock 24 0.81 0.20 1.00 (1.01) 0.40 108.3 0.16 −0.44 7.43 3.09 68.0
Atlantic herring 15 0.44 0.45 0.55 (0.88) 0.40 28 0.518 0.40 7.53 3.0314 25

MAFMC Black sea bass 15 0.80 0.20 0.80 (0.92) 0.40 46.5 0.15 −0.51 15.60 3.1365 22
Bluefish 14 0.80 0.20 0.85 (0.92) 0.40 113 0.126 −0.60 10.90 3.0548 41
Summer flounder 14 0.80 0.25 1.24 (1.16) 0.35 85.5 0.14 −1.20 3.89 3.25 36.0
Scup 15 0.95 0.20 0.80 (0.92) 0.40 46.5 0.15 −0.51 15.60 3.14 22.0

a Steepness values were obtained from Myers et al. (1999). When not provided at the species level, we used the value at the Family level. When the Family level
was not provided (bluefish and black sea bass), we assumed a value of 0.8.
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estimated OFL (Eq. (1)), with a one year lag. Inclusion of a lag was
intended to mimic the process of setting target catches, where under the
best of circumstances the target catch would be calculated using data
from the previous year. We selected 2012 as the cutoff to reduce the
impact of uncertainty in more recent assessment estimates based on

retrospective patterns. Recent assessments for Georges Bank cod,
Georges Bank yellowtail flounder, and witch flounder did not pass re-
view due to increasingly strong retrospective patterns. We still included
these stocks in our analyses, using the most recent assessment that
passed review, and only using data through 2010, assuming that model

Fig. 3. Schaefer surplus production model fits (gray lines) of total biomass each year, along with the current estimates of total biomass for each stock. Multiple fits
were done for each stock using different length time series (i.e., fit through 2000, 2001, 2002, and so on).
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estimates become more stable moving back in time. However, changes
to future assessments for these or other stocks that dramatically change
historical estimates would alter our estimates of the OFL, and poten-
tially our conclusions.

We also compared target catches for each stock to the target catches
set by management. We obtained management target catches from
2000- and 2004-onward for Mid-Atlantic and New England stocks, re-
spectively, for comparison with the target catches estimated by the
different data-limited approaches. From 2010-onward the target cat-
ches were considered the ABC, but prior to 2010 they were often re-
ferred to as the total allowable catch (TAC).For simplicity we refer to
them as the original target catches (OTC), noting that they were not
always set to achieve the OFL (or close to it), either in cases without an
assessment or in cases of rebuilding.

Because we used static estimates from real stocks it is not possible to
remove the target catch (i.e., there is no feedback between the catch,
stock, and data like in MSE simulation models). Our annual estimates of
the target catch must therefore be viewed as independent from one
another, and we cannot calculate common MSE performance metrics
such as the probability of overfishing or the change in biomass over
time in relation to each method. Nevertheless, our approach is a useful
exploration of what the target catch would have been under a data-
limited method in any particular year from 1990 to 2012.

3. Results

Fig. 4 shows the range of median catch/OFL estimates for each
method across stocks and years, separated by historical fishing in-
tensity. For each method, a wide range of target catches (relative to the
OFL) occurs for stocks with and without a history of overfishing. For
stocks without a history of overfishing, most methods tended to pro-
duce target catches below the OFL (Fig. 4A). Exceptions to this were the

Schaefer surplus production model, and the catch curve methods
BK_CC3 and BK_CC5 (see Table 2 for more details on each method),
which had a median catch/ OFL above 1. In contrast, most methods
resulted in target catches above the OFL for stocks with a history of
overfishing, with only the index-based approach Itarget4 and catch
curve method BK_CC1 having a median catch/OFL below 1 (although
other approaches had medians close to 1; Fig. 4B).

It is evident from Fig. 4 that the performance of the methods is
sensitive to the exploitation history for each stock. This result is ex-
pected given that many of these approaches use an average catch over
some time period as the foundation for setting the target catch. The
time period of catches (and other inputs) used by each method varies,
but was typically 3, 5, or all available years of data. For each stock in
each year we calculated the mean F/FMSY over the relevant period for a
method (i.e., the last 3 years if the method uses an average catch over
the last 3 years) and compared these estimates to the target catch/OFL
from each method (Fig. 5). The average catch and index-based methods
resulted in target catches/OFL that were positively correlated with the
mean F/FMSY over the same period (Fig. 5A–J). Weaker correlations
(R2< 0.5) occurred for approaches that used the all available years of
catch data compared to those that used only the most recent three or
five years of data (R2 ≥ 0.8). The slopes of the fit differed greatly across
methods, although most had positive slopes, indicating sensitivity to
recent or historical fishing intensity. Many of the average catch ap-
proaches and both production model approaches had slopes> 1, re-
sulting in a greater magnitude of overfishing for stocks that had ex-
perienced higher rates of historical overfishing, particularly those that
used all available catch data (but excluding years prior to 1978). One
approach that uses the average catch over the available time period is
DCAC (MacCall, 2009), and we found that the assumed depletion level
(DCAC_20 and DCAC_40) did not have a large impact on the target
catch/OFL from this method (Fig. 5H–I), and performance using the

Fig. 4. The median target catch relative to the OFL from each control rule across stocks and years. The black shapes represent the median for each control rule. Top
panel: stocks without a history of overfishing (defined as having less than half of the years from 1990 to 2012 with overfishing). Bottom panel: stocks with a history of
overfishing (more than half of the years). The Production method refers to the Schaefer model.
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data-rich version (DCAC_DR; where changes in assessment-estimated
biomass are used to adjust the catch; Table 2) was similar to the other
DCAC implementations (Fig. 5J).

Catch curve methods, on the other hand, were not correlated with
the exploitation rate during the relevant period (non-significant slopes
for all but Fdem_CC; Fig. 5Q–V). Target catches from these methods
were often close to the OFL despite intense overfishing, but occasionally
target catches were well above the OFL following low exploitation
rates. Insensitivity to historical exploitation rates (which are often un-
known) is a desirable behavior of a data-limited method, but it is
problematic that the target catch from these methods was well above
the OFL for some stocks. The stocks with very high target catch/OFL
were Atlantic herring (Clupea harengus) and SNE/MA yellowtail
flounder (Fig. 6A), but more stocks would have had very high target
catches/OFL for certain methods if we had used the default minimum F
in DLMtool (we used a minimum of 0.05yr−1 compared to the default
of 0.005yr−1; Fig. 6B). For Atlantic herring, pollock (Pollachius virens),
GOM haddock (Melanogrammus aegelfinus), and white hake (Urophycis
tenuis), estimates of Z from the catch curve analysis were occasionally at
or below the assumed M, resulting from high variability in recruitment.
This problem was exacerbated by methods that resulted in high esti-
mates of FMSY, as assuming FMSY = M (the M_CC method) mitigated
against very high catches for these stocks (Fig. 6B). SNE/MA yellowtail
was not impacted by the assumed minimum F (Fig. 6B), and the other
yellowtail flounder stocks also had relatively high target catch/OFL
estimates, on average (Fig. 6A), and these were stocks where Z was

consistently underestimated (albeit above the assumed M; Fig. 2B).
Interestingly, these stocks have the fewest age classes used in the as-
sessment (6), and the age-at-full selection in the catch was typically age
2 or 3, leaving only 3–4 points for the catch curve regression. This
limited number of ages may be contributing to the consistent under-
estimation of Z for these stocks, which causes the target catches from
the catch curve approaches to overestimate the catch relative to the
OFL.

Our measure of performance thus far has been how close the target
catches would have been to the OFL in a given year for a stock, and we
found that many of the options would have resulted in continued under-
or overexploitation, depending on the intensity of exploitation experi-
enced (Fig. 5). Despite continued overfishing for a stock, the data-
limited approaches could still be improvements over the existing
management advice. Fig. 7 shows the proportion of times that the data-
limited methods set catch targets closer to the OFL than the original
target catches (we use OTC for simplicity, noting that the target catches
were considered the ABC from 2010-onward, but were referred to as the
TAC, in earlier years). The ratio of the OTC to the OFL is based on the
current estimates of the OFL from the most recent assessment for a
stock, and not what was estimated to be the OFL in earlier assessments
at the time the target catch was set. In cases where the OTC was below
the OFL (either due to using a buffer or due to earlier assessments/
projections underestimating biomass, or both), data limited methods
were more often than not more conservative than the OTC. When the
OTC was above the OFL (largely due to assessments/projections

Fig. 5. For each method, the mean target catch relative to the OFL (averaged across years for each stock) as a function of the mean F during the relevant time period
for each control rule. The relevant time period is defined as the years of data used in the particular control rule (typically the most recent 3 or 5 years, or all available
years in some cases). The horizontal line at 1 indicates when the target catch is equal to the OFL. On each panel the approach category is listed (Avg= average catch
(A–J); Ind= index-based (K–P); CC= catch curve (Q–V); Prod= surplus production model (W–X)), as well as the slope, p-value and R2 for a linear fit. Most
approaches had significant positive slope, indicating that the target catch/OFL increased with increasing mean F, although the magnitude of the increase varied
greatly across methods (from 0.25 for Fdem_CC(T) to 2.19 for the Schaefer production model(X)). Most catch curve methods had slopes that were not significantly
different from 0, indicating that the target catch/OFL was independent of the recent mean F.
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overestimating biomass; c.f. Wiedenmann and Jensen, 2018) many of
the data-limited options were improvements over the OTC. The average
catch approaches that used the recent average catch (3–5 years) were
improvements over OTC 60–74% of the time. The index-based ap-
proaches also used the average catch in the last 3–5 years, and as a
results were also an improvement over the OTC (66–73% of the time).
All but one of the catch curve approaches (BK_CC5) were an improve-
ment over the OTC more often than not, while the production model
approaches were more frequently farther above the OFL than the OTC
(Fig. 7).

The magnitude of the improvement (or worsening) of the data-
limited target catch, on average, compared to the OTC is shown in
Fig. 8 for a subset of methods. The data-limited methods were often
closer to the OFL than the OTC when the OTC was well above the OFL.
For the average catch and index-based methods, the largest improve-
ments occurred for the most conservative options, but with the tradeoff
of producing target catches well below the OFL when the OTC was at or
below the OFL (Fig. 8A, B). The three catch curve methods shown
(BK_CC1, M_CC and YPR_CC) produced catch targets that were much
closer to the OFL when the OTCs were more than twice the OFL
(Fig. 8C). The production models tended to produce target catches
above the OFL, although interestingly the data-limited version SPMSY
was generally more conservative than the Schaefer surplus production
model that was fit to survey data (Fig. 8D).

4. Discussion

We evaluated the ability of several data-limited methods to set
target catches close to the OFL for data-rich stocks in the Northeast U.S.

Most options we explored were very sensitive to the level of historical
exploitation, producing target catches above the OFL for stocks that had
a history of overfishing, or target catches below the OFL for stocks with
a history of light exploitation. The more conservative options reduced
the magnitude of overfishing relative to the historical level for over-
exploited stocks, but at the cost of being too conservative for lightly
exploited stocks. Catch curve methods were the only approaches we
explored that were insensitive to the level of historical exploitation, and
were largely effective at setting target catches close to the OFL for
overexploited stocks.

Given our findings, which approaches are suitable or unsuitable to
use when a data-poor /-moderate method is needed? The approaches
we tested had different data requirements, from truly data-poor
methods that required only a catch time series (the average catch
methods), to more data-moderate approaches that required an index of
abundance or catch-at-age data. Most stocks in our analysis experienced
intense exploitation for at least part of their history, so approaches that
used the average or median catch over the entire time period often
resulted in very high target catches relative to the OFL. DCAC aims to
adjust the average catch by an assumed depletion level, and we as-
sumed relatively large levels of depletion over the catch time period
across all stocks and all years (60% and 80%). For stocks that experi-
enced light historical exploitation it is therefore not surprising that our
application of DCAC was too conservative. However, for overexploited
stocks, even the larger depletion assumption was insufficient in our
analysis. Our data-rich application of DCAC performed similarly to our
application using static levels of depletion, suggesting that this result is
not due to the assumptions we used in the method. MacCall (2009)
notes that DCAC estimates a catch that would be sustainable, on

Fig. 6. A) Similar to Fig. 5, but for three catch curve methods, with individual stock name abbreviations showing (see Table 1). Each point represents the average
across years (1990–2012) for each stock. The dashed horizontal lines shown when the control rule was able to get within±50% of the OFL, on average. B) The target
catch for a subset of stocks, based on the assumed minimum F estimated from the catch curve analysis (estimated F= estimated Z – assumedM). The baseline method
uses the DLMtool default minimum F of 0.005yr−1, while the modified method uses a minimum F of 0.05yr−1. The solid black line is the 1:1 line, such that points
close to the line indicate insensitivity to the assumed minimum F. The target catch in A) was calculated using the modified, higher minimum F.
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average, over the period of available catch data, and cautions that the
particular yield may no longer be sustainable for severely depleted
stocks. Therefore, MacCall (2009) recommends against using DCAC for
stocks undergoing rebuilding. Simulation studies have shown that
DCAC tends to perform well when stocks are close to BMSY, but that
unsustainable catches can result when B< < BMSY (Wiedenmann
et al., 2013; Carruthers et al., 2014). Our results are in agreement with
these simulation studies, and support MacCall’s caveat against using
DCAC for stocks likely to be overfished, or at least for the need of an
additional correction factor. Rago (2017) explored DCAC as a fallback
for Atlantic halibut (Hippoglossus) in the Northeast U.S., a stock believed
to be heavily overfished, and further adjusted the DCAC-estimated
catch by multiplying by an assumed B/BMSY, although DCAC was ulti-
mately not recommended for management. Further exploration of the
impacts of such adjustments is warranted to better understand the
utility of DCAC for heavily depleted stocks. We note, however, that our
results may be sensitive to the time periods of catch data input into
DCAC, as they may not be representative of the “windfall” catch period
used in the derivation of the method (MacCall, 2009). However, in-
cluding catches from earlier time periods would have resulted in higher
target catches for many stocks using DCAC (using the same assumed
depletion levels) due to the very high catches from foreign fleets prior
in earlier years (Sosebee et al., 2006).

The index-based approaches were sensitive to the intensity of recent
exploitation, but all of the approaches would have resulted in com-
parable or more conservative target catches relative to recent levels
(slopes< 1 in Fig. 5). Thus, the index-based methods would not have
been worse than what was already occurring for a stock, and the more
conservative options we explored would have reduced the magnitude of
overfishing that was occurring in such cases. For example, both Islope4

and Itarget1 produced target catches for stocks close to the OFL when
stocks had experience recent harvest rates between 1.5 to 2.5 times
FMSY, but these options were overly conservative when stocks were fully
or under-exploited. The PlanB_3 approach was the least conservative
index-based method we explored for stocks experiencing recent over-
fishing. This approach is currently used to set target catches for GB cod
following problems with the age-based assessment (NEFSC, 2015a,
2017), and our findings suggest that perhaps a more conservative op-
tion may be better suited for this stock given that it is still believed to be
overfished, although whether or not overfishing is occurring is un-
known. Care is needed when selecting which index-based approach to
use, with careful weighing of the evidence indicating whether or not
overfishing is likely to be occurring, although determining recent ex-
ploitation rates may be incredibly difficult for a data-limited stock.
Recent exploitation rates from other assessed species, either in the re-
gion or within the same fishery if possible, may be used as a proxy for
the focal stock, as Free et al. (2017) showed that the best predictor of
relative population size was the status of other stocks in the same
fishery. A caveat to index-based approaches is that they do not aim to
achieve MSY in the long run for a stock. For example, the more con-
servative options may allow for rebuilding of an overfished stock, but
their long-term application would likely result in a considerable
amount of forgone yield (Carruthers et al., 2015). Alternatively, the less
conservative index-based options could preserve the status quo harvest
rates, keeping the population relatively stable for an overfished popu-
lation, but at a level below where maximum production occurs, re-
sulting in a loss of long-term yield in such cases of “sustainable over-
fishing” (Hilborn et al., 2015).

We found that catch curve methods were very effective overall,
producing target catches close to the OFL, on average, independent of

Fig. 7. Proportion of times (across years and stocks) when the target catch from the data-limited control rule was closer to the OFL than the original target catch
(OTC) that was set for management, whether or not the OTC was above or below the OFL. The horizontal line at 0.5 separates when the method was more or less
likely to be closer to the OFL than the original OTC.
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the exploitation history for a stock. While catch-at-age data may not be
available in many data-limited cases, when it is, our findings support
the use of catch curve methods (which are currently used for several
species in Southeast Australia; Wayte, 2009). In particular, the M_CC
method performed very well across stocks, and by simply assuming
FMSY = M (or potentially lower values based on Zhou et al., 2012), this
method avoids requiring many of the inputs used to estimate FMSY in the
other approaches (Tables 2 and 3). In some cases, however, catch curve
methods also produced very large target catches, so our findings are not
a blanket endorsement for these methods. The poor performance of
catch curve methods in some instances does not rule out their use,
however, as there are commonalities in the reasons for the high target
catches in most cases. Large catches resulted when the catch curve
greatly underestimated the total mortality for the stock, which tended
to occur for stocks 1) with pulsed recruitment events, and 2) with a
limited number of age classes with which to estimate Z. Expanding the
catch-at-age matrix to include more ages, if possible, could address 2).
For 1), we found that using a modest minimum F threshold in the catch
curve estimation greatly improved the performance of the catch curve
methods for many stocks. Another possible solution to 1) is to omit the
large age class from the estimation of Z in a given year, or to estimate Z
by following cohorts through the catch across multiple years. Further
exploration into alternative ways to apply catch curve methods is
warranted given our findings.

Interestingly, simulation studies of catch curve methods using the
MSE portion of DLMTool have generally found them to perform poorly,
resulting in a high risk of overfishing and low long-term yield (Miller,
2016; Sagarese et al., In press), and as a result they were not explored in

greater detail in these studies. It is possible that the behavior that we
observed, where these methods occasionally produced very large target
catches (> 5 x OFL) using the default minimum F (0.005yr−1) may be
behind the overall poor average performance in the simulation studies.
Infrequent, anomalously high catch levels applied over a multiple years
in a simulation would result in frequent overfishing and cause the po-
pulation to crash, resulting in low long-term yield (metrics often used to
determine suitability of the methods). For Atlantic mackerel,
Wiedenmann (2015) explored the MSE portion of DLMTool and simi-
larly found poor performance of the catch curve methods, although the
MSE was not used as a justification to include or exclude methods in the
target catch determination, and the catch curve methods were explored
in further detail. Target catches from the catch curve methods for
mackerel were often conservative compared to the other methods ex-
plored. An age-based assessment for mackerel recently passed review
(NEFSC, 2018), and estimated the OFL in 2017 to be 22,000mt, com-
pared to the catch curve-estimated catches between 13,000–26,000mt
(Wiedenmann, 2015), indicating that the catch curve methods were
relatively close to the OFL. Thus, we recommend that catch curve
methods are explored as an option when catch-at-age data are avail-
able, but to proceed with caution when very low estimates of Z result,
or when an anomalously large target catch is produced.

Approaches that used a production model in the control rule
(SPMSY, and our fit of the Schaefer model to the available survey in-
dices) were also sensitive to the exploitation history, producing higher
target catches (relative to the OFL) for more depleted stocks. This result
is likely due to the “one way trip” declines for many stocks (Fig. 3) that
do not provide sufficient information about the strength of density-

Fig. 8. Ratio of the mean original target catch (OTC) to the OFL and the median data-limited estimated catch to OFL for a subset of methods in each category. The
mean values for each stock are calculated across all years where target catches are available for each stock (2000–2012 for Mid-Atlantic stocks, and 2004–2012 for
New England stocks). The solid black line represents the 1:1 line, while the dashed horizontal and vertical lines indicate when the target catch and TAC are above or
below the OFL, respectively. Limits of the y-axis are the same for each plot for ease of comparison, but some points are not shown in D as a result.
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dependence. The lack of recovery despite low catches for some stocks
also suggests a change in stock productivity, violating the underlying
assumptions of the production model, potentially resulting in inflated
estimates of the OFL.

In reviewing the recent management performance for New England
groundfish, Rothschild et al. (2014) noted the poor performance of the
projection estimates relative to the updated age-based assessment es-
timates, and suggested surplus production models may be an alternative
to age-based assessments for groundfish. We fit the Schaefer surplus
production model to the available spring and fall indices and catch
data, and compared estimates to the results from age-based assess-
ments. It is interesting that SPMSY, which was not fit to index data, was
generally more conservative than the Schaefer production model, al-
though both production models in our analysis tended to produce
higher estimates of total biomass and the OFL compared to the age-
based models. This result is in agreement with other explorations of
surplus production model applications to New England groundfish
(Rothschild, 2013; Deroba et al., 2015), but does not resolve the
question of which modeling approach is more accurate. The underlying
population dynamics in production and age-structured models are ab-
stractions of the natural world, and the ability of each model to accu-
rately estimate total biomass and reference points will depend on the
relative information in aggregate indices and in age structured data,
and also on which, and to what extent model assumptions are violated.
Here we used estimates from the most recent age-based assessments as
our measure of the underlying population dynamics, as these estimates
represent the current best available science for each stock. If production
models were to become the standard assessment method, then our es-
timates of the OFL would be revised upward for many stocks, changing
our interpretation of the ability of many of these data-limited methods
to estimate the OFL.

An interesting finding of our work is that many of the data-limited
approaches produced target catches that were improvements (i.e.,
closer to the OFL) over the OTCs from projections based on age-based
assessments, particularly when the OTC was higher than the OFL.
Wiedenmann and Jensen (2018) found that for New England ground-
fish (all NEFMC stocks listed in Table 1 except Atlantic herring), the
target catches set were aimed at achieving harvest rates generally at or
below FMSY, but overly optimistic projections, primarily from over-
estimated terminal abundance in earlier assessments, resulted in the
OTC being well above the OFL for many stocks (Brooks and Legault,
2016; Wiedenmann and Jensen, 2018). Across groundfish stocks, actual
catches were 29% below the OTC, on average, yet the achieved F was
151% above the original target F(see Fig. 1 and Table 3 in Wiedenmann
and Jensen, 2018). Many of the approaches we evaluated here use re-
cent catches (not the target), such that using the average catch over the
last 3 or 5 years was an improvement over the OTC, but more sub-
stantial improvements occurred for some of the catch curve methods
and the more conservative index-based approaches. Geromont and
Butterworth (2015) explored what they called empirical approaches
(analogous to the Islope1 and Itarget1 methods) for four stocks (in-
cluding two stocks used here) and found that the catches were generally
comparable and less variable than those from the more complex age-
based assessments. They did not argue for the abandonment of age-
based assessments, but rather that simple, empirical methods could be
used in the interim between assessments, freeing up resources by al-
lowing for a greater interval between age-based assessments
(5–10 years). Our findings support their recommendation, and having a
longer interval between assessments could allow for more resources
devoted to addressing many of the uncertainties in the assessments for
these stocks.

An important caveat to our approach is that the target catch from
each method is not removed from the population over time. In a MSE
simulation model, the catch estimated each year from a data-limited
method is removed from the population, such that there is feedback
between unsustainable options that would drive the population to low

levels, and vice-versa. Large changes in population status would likely
be reflected in the survey index, catch-at-age data, and other metrics
that inform the methods. Those methods that are updated with new
information might therefore correct themselves in the long run in re-
sponse to large changes in the population that occurred earlier in the
time period. While MSEs are an indispensible tool for evaluating ben-
efits and tradeoffs among management alternatives (Punt et al., 2016;
Punt, 2017), retrospective evaluations like we performed here are a
useful compliment to MSEs to identify effective management strategies.
Many of our findings about average catch and index-based approaches
are consistent with previous MSE work (Wiedenmann et al., 2013;
Carruthers et al., 2014, 2015), but our findings on catch curve methods
suggest better performance than in some recent MSE analyses using
DLMtool (Miller, 2016; Sagarese et al., In press). Thus, both MSE and
retrospective approaches may provide useful insights into performance
of data-limited methods, and both approaches should be used to test
new methods, or existing methods on stocks or fisheries that have not
been explored.
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